A126560 a(n) = gcd(4(n+1)(n+2), n(n+3)), periodic with 8-cycle 4,2,2,4,8,2,2,8.
4, 2, 2, 4, 8, 2, 2, 8, 4, 2, 2, 4, 8, 2, 2, 8, 4, 2, 2, 4, 8, 2, 2, 8, 4, 2, 2, 4, 8, 2, 2, 8, 4, 2, 2, 4, 8, 2, 2, 8, 4, 2, 2, 4, 8, 2, 2, 8, 4, 2, 2, 4, 8, 2, 2, 8, 4, 2, 2, 4, 8, 2, 2, 8, 4, 2, 2, 4, 8, 2, 2, 8, 4, 2, 2, 4, 8, 2, 2, 8, 4, 2, 2, 4, 8, 2, 2, 8, 4, 2, 2, 4, 8, 2, 2, 8, 4, 2, 2, 4, 8, 2, 2, 8
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..8192
Crossrefs
Cf. A125650.
Programs
-
Mathematica
Table[GCD[m(3+m),4(1+m)(2+m)],{m,48}]
-
PARI
A126560(n) = gcd(4*(n+1)*(n+2),n*(n+3)); \\ Antti Karttunen, Aug 11 2017
Formula
a(n) = GCD[4(n+1)(n+2),n(n+3)]
a(n)=4+(-1+1/2*2^(1/2))*cos(Pi*n/4)-1/2*2^(1/2)*sin(Pi*n/4)+(-1/2*2^(1/2)-1)*cos(3*Pi*n/4)-1/2*2^(1/2)*sin(3*Pi*n/4)+2*cos(n*Pi/2)-2*sin(n*Pi/2) [From Richard Choulet, Dec 11 2008]
Extensions
More terms from Antti Karttunen, Aug 11 2017
Comments