A126562 Number of intersections of at least four edges in a cube of n X n X n smaller cubes.
0, 7, 32, 81, 160, 275, 432, 637, 896, 1215, 1600, 2057, 2592, 3211, 3920, 4725, 5632, 6647, 7776, 9025, 10400, 11907, 13552, 15341, 17280, 19375, 21632, 24057, 26656, 29435, 32400, 35557, 38912, 42471, 46240, 50225, 54432, 58867, 63536, 68445
Offset: 1
Examples
On a cube made of 3 X 3 X 3 smaller cubes, each of the 6 sides has 4 intersections of four edges and in the center, there are 8 intersections of six edges. 6 * 4 + 8 = 32, which is a(3).
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A017617.
Programs
-
Magma
[6*(n-1)^2 + (n-1)^3: n in [1..40]]; // Vincenzo Librandi, Jun 27 2015
-
Mathematica
LinearRecurrence[{4, -6, 4, -1}, {0, 7, 32, 81}, 50] (* Vincenzo Librandi, Jun 27 2015 *)
-
PARI
concat(0, Vec(x^2*(7+4*x-5*x^2)/(1-x)^4 + O(x^50))) \\ Michel Marcus, Jun 26 2015
-
Python
def a(n): return (n**3+3*n**2-9*n+5) # Torlach Rush, May 01 2024
Formula
a(n) = 6*(n-1)^2 + (n-1)^3.
G.f.: x^2*(7+4*x-5*x^2)/(1-x)^4. - Colin Barker, Jul 29 2012
a(n-1) = n^3 - (12*n-16). - Luciano Ancora, Jun 25 2015
Comments