cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126655 Numbers n such that 6*p(n)-1 and 6*p(n)+1 are twin primes and 6*p(n+1)-1 and 6*p(n+1)+1 are also twin primes with p(n) = n-th prime.

Original entry on oeis.org

1, 2, 3, 27, 137, 340, 479, 882, 1415, 1883, 3442, 3798, 4284, 5827, 7559, 8783, 9453, 10355, 10731, 11388, 12565, 13613, 16477, 17007, 18402, 18665, 19450, 19633, 22306, 24971, 25083, 29108, 29861, 30748, 31694, 32622, 33097, 36743, 37141
Offset: 1

Views

Author

Pierre CAMI, Feb 09 2007

Keywords

Examples

			6*2-1=11 6*2+1=13 11 13 twin primes as 17 and 19 so 1 is first term of the sequence
6*3-1=17 6*3+1=19 17 19 twin primes as 29 and 31 so 2 is second term of the sequence
6*5-1=29 6*5+1=31 29 and 31 twin primes 5=3rd prime
6*7-1=41 6*7+1=43 41 and 43 twin primes 7=4th prime so 3 is the 3rd term of the sequence
		

Crossrefs

Cf. A060212.

Programs

  • Mathematica
    Select[Range[39000], PrimeQ[6*Prime[ # ] - 1] && PrimeQ[6*Prime[ # ] + 1] && PrimeQ[6*Prime[ # + 1] - 1] && PrimeQ[6*Prime[ # + 1] + 1] &] (* Ray Chandler, Feb 11 2007 *)
    Select[Range[40000],AllTrue[Flatten[{6*Prime[#]+{1,-1},6*Prime[#+1]+{1,-1}}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 27 2015 *)

Extensions

Corrected and extended by Ray Chandler, Feb 11 2007