cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126673 Third diagonal of A126671.

Original entry on oeis.org

0, 2, 26, 274, 2844, 30708, 351504, 4292496, 55988640, 779171040, 11545476480, 181705299840, 3029581820160, 53376951801600, 991337037465600, 19363464423475200, 396915849843609600, 8520964324004966400, 191220598650009600000, 4477883953203763200000, 109242544826541772800000
Offset: 2

Views

Author

N. J. A. Sloane and Carlo Wood (carlo(AT)alinoe.com), Feb 13 2007

Keywords

Comments

It appears that a(n) = sum of invc(p) over all permutations p of {1,2,...,n}, where invc(p) is defined (by Carlitz) in the following way: express p in standard cycle form (i.e., cycles ordered by increasing smallest elements with each cycle written with its smallest element in the first position), then remove the parentheses and count the inversions in the obtained word. a(3)=2 because the six permutations 123,132,312,213,231 and 321 of {1,2,3} yield the words 123,123,132,123,123 and 132, respectively, having a total of 0+0+1+0+0+1 = 2 inversions. a(n) = Sum_{k>=0} k*A129178(n,k). - Emeric Deutsch, Oct 10 2007

References

  • L. Carlitz, Generalized Stirling numbers, Combinatorial Analysis Notes, Duke University, 1968, 1-7.

Crossrefs

Programs

  • Magma
    [Factorial(n)*(n*(n-5)/4 + HarmonicNumber(n)): n in [2..25]]; // G. C. Greubel, May 05 2019
    
  • Maple
    seq(n!*(sum(1/k, k = 1 .. n)+(1/4)*n*(n-5)), n = 2 .. 21); # Emeric Deutsch, Oct 10 2007
  • Mathematica
    Table[n!*(n*(n-5)/4 + HarmonicNumber[n]), {n,2,25}] (* G. C. Greubel, May 05 2019 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(serlaplace( (2*x - 3*x^2 + 2*(1-x)^2*log(1-x))/(2*(-1+x)^3) ))) \\ G. C. Greubel, May 05 2019
    
  • Sage
    [factorial(n)*(n*(n-5)/4 + harmonic_number(n)) for n in (2..25)] # G. C. Greubel, May 05 2019

Formula

a(n) = n! * (n*(n-5)/4 + 1 + 1/2 + ... + 1/n). - Emeric Deutsch, Oct 10 2007
E.g.f.: (2*x - 3*x^2 + 2*(1-x)^2 * log(1-x)) / (2*(-1+x)^3). - G. C. Greubel, May 05 2019
a(n) = 2 * Sum_{k>=1} k * A381529(n,k). - Alois P. Heinz, Feb 26 2025