A126673 Third diagonal of A126671.
0, 2, 26, 274, 2844, 30708, 351504, 4292496, 55988640, 779171040, 11545476480, 181705299840, 3029581820160, 53376951801600, 991337037465600, 19363464423475200, 396915849843609600, 8520964324004966400, 191220598650009600000, 4477883953203763200000, 109242544826541772800000
Offset: 2
Keywords
References
- L. Carlitz, Generalized Stirling numbers, Combinatorial Analysis Notes, Duke University, 1968, 1-7.
Links
- G. C. Greubel, Table of n, a(n) for n = 2..445
- M. Shattuck, Parity theorems for statistics on permutations and Catalan words, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 5, Paper A07, 2005.
- N. J. A. Sloane, Notes on Carlo Wood's Polynomials
Programs
-
Magma
[Factorial(n)*(n*(n-5)/4 + HarmonicNumber(n)): n in [2..25]]; // G. C. Greubel, May 05 2019
-
Maple
seq(n!*(sum(1/k, k = 1 .. n)+(1/4)*n*(n-5)), n = 2 .. 21); # Emeric Deutsch, Oct 10 2007
-
Mathematica
Table[n!*(n*(n-5)/4 + HarmonicNumber[n]), {n,2,25}] (* G. C. Greubel, May 05 2019 *)
-
PARI
my(x='x+O('x^30)); concat([0], Vec(serlaplace( (2*x - 3*x^2 + 2*(1-x)^2*log(1-x))/(2*(-1+x)^3) ))) \\ G. C. Greubel, May 05 2019
-
Sage
[factorial(n)*(n*(n-5)/4 + harmonic_number(n)) for n in (2..25)] # G. C. Greubel, May 05 2019
Formula
a(n) = n! * (n*(n-5)/4 + 1 + 1/2 + ... + 1/n). - Emeric Deutsch, Oct 10 2007
E.g.f.: (2*x - 3*x^2 + 2*(1-x)^2 * log(1-x)) / (2*(-1+x)^3). - G. C. Greubel, May 05 2019
a(n) = 2 * Sum_{k>=1} k * A381529(n,k). - Alois P. Heinz, Feb 26 2025
Comments