A126706 Positive integers which are neither squarefree integers nor prime powers.
12, 18, 20, 24, 28, 36, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188
Offset: 1
Keywords
Examples
45 is in the sequence because 45=3^2*5, i.e., neither squarefree nor a prime power.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): a:=proc(n) if mobius(n)=0 and nops(factorset(n))>1 then n else fi end: seq(a(n), n=1..230); # Emeric Deutsch, Feb 17 2007
-
Mathematica
Select[Range[200], Max @@ Last /@ FactorInteger[ # ] >1 && Length[FactorInteger[ # ]] > 1 &] (* Ray Chandler, Feb 17 2007 *) Select[Range[200],!SquareFreeQ[#]&&!PrimePowerQ[#]&] (* Harvey P. Dale, Aug 05 2023 *)
-
PARI
isok(k) = !issquarefree(k) && !isprimepower(k); \\ Michel Marcus, Nov 02 2022
-
Python
from math import isqrt from sympy import primepi, integer_nthroot, mobius def A126706(n): def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Aug 15 2024
Extensions
Extended by Emeric Deutsch and Ray Chandler, Feb 17 2007