A126725 a(1)=0, a(2)=1; for n>2, a(n) = C(n,2)*(1+a(n-2)).
0, 1, 3, 12, 40, 195, 861, 5488, 31032, 247005, 1706815, 16302396, 133131648, 1483518127, 13978823145, 178022175360, 1901119947856, 27237392830233, 325091511083547, 5175104637744460, 68269217327545080, 1195449171318970491
Offset: 1
Keywords
Crossrefs
Cf. A087214.
Programs
-
Magma
I:=[0,1]; [n le 2 select I[n] else Binomial(n,2)*(1+Self(n-2)): n in [1..35]]; // Vincenzo Librandi, Mar 17 2015
-
Maple
seq(simplify(hypergeom([1, 1-n/2, 3/2-n/2], [], 2))*(n-1)*n/2,n=1..22); # Mark van Hoeij, May 12 2013
-
Mathematica
nxt[{n_,a_,b_}]:={n+1,b,Binomial[n+1,2](a+1)}; Transpose[NestList[nxt,{2,0,1},30]][[2]] (* Harvey P. Dale, Oct 12 2014 *)
Formula
a(n) = A087214(n) - 1. - N. J. A. Sloane, Feb 15 2007
a(n) = Sum_{k=1..floor(n/2)} 2^k*Pochhammer(-n/2,k)*Pochhammer(1/2-n/2,k). - Theodore M. Mishura, Mar 16 2015
a(n) ~ n! * (exp(sqrt(2)) + (-1)^n * exp(-sqrt(2))) / 2^(n/2+1). - Vaclav Kotesovec, Mar 20 2015
Extensions
Edited by Vladeta Jovovic, Feb 20 2009
Comments