A126759 a(0) = 1; a(2n) = a(n); a(3n) = a(n); otherwise write n = 6i+j, where j = 1 or 5 and set a(n) = 2i+2 if j = 1, otherwise a(n) = 2i+3.
1, 2, 2, 2, 2, 3, 2, 4, 2, 2, 3, 5, 2, 6, 4, 3, 2, 7, 2, 8, 3, 4, 5, 9, 2, 10, 6, 2, 4, 11, 3, 12, 2, 5, 7, 13, 2, 14, 8, 6, 3, 15, 4, 16, 5, 3, 9, 17, 2, 18, 10, 7, 6, 19, 2, 20, 4, 8, 11, 21, 3, 22, 12, 4, 2, 23, 5, 24, 7, 9, 13, 25, 2, 26, 14, 10, 8, 27, 6, 28, 3, 2, 15, 29, 4, 30, 16, 11, 5, 31, 3
Offset: 0
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a126759 n = a126759_list !! n a126759_list = 1 : f 1 where f n = (case mod n 6 of 1 -> 2 * div n 6 + 2 5 -> 2 * div n 6 + 3 3 -> a126759 $ div n 3 _ -> a126759 $ div n 2) : f (n + 1) -- Reinhard Zumkeller, May 23 2013
-
Maple
a:=proc(n) option remember; local i,j; if n = 0 then RETURN(1); fi; if n mod 2 = 0 then RETURN(a(n/2)); fi; if n mod 3 = 0 then RETURN(a(n/3)); fi; j := n mod 6; i := (n-j)/6; if j = 1 then RETURN(2*i+2) else RETURN(2*i+3); fi; end; [seq(a(n),n=0..100)];
-
Mathematica
a[n_] := a[n] = Module[{i, j}, If[n == 0, Return[1]]; If[Mod[n, 2] == 0, Return[a[n/2]]]; If[Mod[n, 3] == 0, Return[a[n/3]]]; j = Mod[n, 6]; i = (n-j)/6; If[j == 1, Return[2*i+2], Return[2*i+3]]]; Table[a[n], {n, 0, 90}] (* Jean-François Alcover, Feb 11 2014, after Maple *)
-
PARI
a(n) = if (n, if (!(n%2), a(n/2), if (!(n%3), a(n/3), my(k=n%6); if (k==1, 2*(n\6)+2, 2*(n\6)+3))), 1); \\ Michel Marcus, Aug 06 2022
-
Scheme
(definec (A126759 n) (cond ((zero? n) 1) ((even? n) (A126759 (/ n 2))) ((zero? (modulo n 3)) (A126759 (/ n 3))) ((= 1 (modulo n 6)) (+ 2 (/ (- n 1) 3))) (else (+ 1 (/ (+ n 1) 3))))) ;; Antti Karttunen, Jan 28 2015
Formula
a(0) = 1, a(2n) = a(n), a(3n) = a(n), a(6n+1) = 2n + 2, a(6n-1) = 2n + 1. [Essentially same as the original description, except the last clause expressed slightly differently.] - Antti Karttunen, Jan 28 2015
Extensions
Typo in definition corrected by Reinhard Zumkeller, Jun 16 2008
Comments