cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126787 G.f.: B(x)*B(2!*x^2)*B(3!*x^3)*..., where B(x) is g.f. of A000142.

Original entry on oeis.org

1, 1, 4, 14, 66, 308, 1888, 12240, 95640, 827904, 8106960, 87387264, 1035645312, 13316300928, 184988692800, 2756878875648, 43888205438208, 742943286892800, 13326434312808960, 252448071959572992, 5036116692383428608, 105523926692032447488
Offset: 0

Views

Author

Vladeta Jovovic, Feb 18 2007

Keywords

Comments

Take each Ferrers diagram of the partitions of n, label(linearly order) the dots within each row, then linearly order any of the rows that are of equal length. - Geoffrey Critzer, Mar 21 2009

Crossrefs

Programs

  • Maple
    B:= proc(n) option remember; local x; unapply(`if`(n<=0, 1, B(n-1)(x)+ n! *x^n), x) end: BB:= proc(n) local x, d; unapply(convert(series(mul(B(floor(n/d))(d!*x^d), d=1..n), x, n+1), polynom), x) end: a:= n-> coeff(BB(n)(x), x, n): seq(a(n), n=0..25); # Alois P. Heinz, Sep 25 2008
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, n!,
          add(b(n-i*j, i-1)*j!*i!^j, j=0..n/i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 02 2017
  • Mathematica
    CoefficientList[Series[Product[Sum[x^(n*k) n!^k*k!, {k, 0, 20}], {n, 1, 20}], {x, 0, 20}], x] (* Geoffrey Critzer, Mar 21 2009 *)

Formula

a(n) ~ 2*n! * (1 + 1/(2*n) + 3/n^2 + 13/n^3 + 82/n^4 + 587/n^5 + 4966/n^6). - Vaclav Kotesovec, Mar 16 2015

Extensions

More terms from Alois P. Heinz, Sep 25 2008