cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126795 a(n) = gcd(n, Product_{p|n} (p+1)), where the product is over the distinct primes p that divide n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 12, 1, 2, 3, 1, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 12, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 2, 3, 2, 1
Offset: 1

Views

Author

Leroy Quet, Mar 14 2007

Keywords

Comments

First occurrence of k: 1, 10, 15, 28, 95, 6, 91, 56, 153, 190, 473, 12, 1339, 182, 285, 496, 1139, 90, 703, 380, ..., . - Robert G. Wilson v

Examples

			The distinct primes that divide 28 are 2 and 7. So a(28) = GCD(28, (2+1)(7+1)) = GCD(28, 24) = 4.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) local fs: fs:=factorset(n): gcd(n,product(1+fs[i],i=1..nops(fs))) end: seq(a(n),n=1..120); # Emeric Deutsch, Mar 27 2007
  • Mathematica
    f[n_] := GCD[n, Times @@ (First /@ FactorInteger[n] + 1)]; Array[f, 101] (* Robert G. Wilson v *)
  • PARI
    A126795(n) = gcd(n,factorback(apply(p -> p+1,factor(n)[,1]))); \\ Antti Karttunen, Sep 10 2018

Formula

a(n) = gcd(n, A048250(n)).
a(n) = gcd(n, A325313(n)) = gcd(n, A048250(n)-n). - Antti Karttunen, Apr 24 2019

Extensions

More terms from Emeric Deutsch, Mar 27 2007