A126795 a(n) = gcd(n, Product_{p|n} (p+1)), where the product is over the distinct primes p that divide n.
1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 12, 1, 2, 3, 1, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 12, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 2, 3, 2, 1
Offset: 1
Keywords
Examples
The distinct primes that divide 28 are 2 and 7. So a(28) = GCD(28, (2+1)(7+1)) = GCD(28, 24) = 4.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Maple
with(numtheory): a:=proc(n) local fs: fs:=factorset(n): gcd(n,product(1+fs[i],i=1..nops(fs))) end: seq(a(n),n=1..120); # Emeric Deutsch, Mar 27 2007
-
Mathematica
f[n_] := GCD[n, Times @@ (First /@ FactorInteger[n] + 1)]; Array[f, 101] (* Robert G. Wilson v *)
-
PARI
A126795(n) = gcd(n,factorback(apply(p -> p+1,factor(n)[,1]))); \\ Antti Karttunen, Sep 10 2018
Formula
a(n) = gcd(n, A048250(n)).
Extensions
More terms from Emeric Deutsch, Mar 27 2007
Comments