A126849 Sum over the divisors d of n constrained to cases where all exponents of the prime factorization of d are prime.
1, 0, 0, 4, 0, 0, 0, 12, 9, 0, 0, 4, 0, 0, 0, 12, 0, 9, 0, 4, 0, 0, 0, 12, 25, 0, 36, 4, 0, 0, 0, 44, 0, 0, 0, 49, 0, 0, 0, 12, 0, 0, 0, 4, 9, 0, 0, 12, 49, 25, 0, 4, 0, 36, 0, 12, 0, 0, 0, 4, 0, 0, 9, 44, 0, 0, 0, 4, 0, 0, 0, 129, 0, 0, 25, 4, 0, 0, 0, 12, 36, 0, 0, 4, 0, 0, 0, 12, 0, 9, 0, 4, 0, 0, 0, 44
Offset: 1
Keywords
Examples
a(12) = 2^2 = 4 because 4 is the only divisor of the divisors set 1, 2 = 2^1, 3 = 3^1, 4 = 2^2, 6 = 2^1 * 3^1, 12 = 2^2 * 3^1 for which all the exponents are prime. a(9) = 9 because 9 is the only divisor of the set 1, 3 = 3^1, 9 = 3^2 for which all the exponents are prime.
Links
Programs
-
Mathematica
Array[DivisorSum[#, # &, AllTrue[FactorInteger[#][[All, -1]], PrimeQ] &] &, 96] (* Michael De Vlieger, Nov 17 2017 *)
-
PARI
vecproduct(v) = { my(m=1); for(i=1,#v,m *= v[i]); m; }; A293449(n) = vecproduct(apply(e -> isprime(e), factorint(n)[, 2])); A126849(n) = if(1==n,n,sumdiv(n,d,(d>1)*A293449(d)*d)); \\ Antti Karttunen, Nov 17 2017
-
PARI
first(n) = {my(res = vector(n)); res[1] = 1; forprime(p = 2, sqrtint(n), forprime(e = 2, logint(n, p), for(k = 1, n \ (p^e), res[k*p^e] += p^e))); res} \\ David A. Corneth, Nov 17 2017
Formula
sum_{d|n, d=product p_j^r_j, all r_j prime} d.
a(1) = 1, and for n > 1, a(n) = Sum_{d|n, d>1} A293449(d)*d. - Antti Karttunen, Nov 17 2017
Extensions
Edited and extended by R. J. Mathar, Jul 10 2009
Comments