A126851 SPM4Sigma(n) = (-1)^(1/2*((Sum_i p_i)-Omega(m'))*Sum_{d|n} (-1)^(1/2*((Sum_j p_j)-Omega(d'))*d =(2^(r+1)-1)*Product_i [Sum_{1<=s_i<=r_i} p_i^s_i +(-1)^((p_i-1)/2)] where n=2^r*m', gcd(2,m')=1, m'=Product_i p_i^r_i, d=2^k*d', gcd(2,d')=1, d'=Product_j p_j^r_j SPM4 for Signed by Prime factors Mod 4.
1, 3, 2, 7, 6, 6, 6, 15, 11, 18, 10, 14, 14, 18, 12, 31, 18, 33, 18, 42, 12, 30, 22, 30, 31, 42, 38, 42, 30, 36, 30, 63, 20, 54, 36, 77, 38, 54, 28, 90, 42, 36, 42, 70, 66, 66, 46, 62, 55, 93, 36, 98, 54, 114, 60, 90, 36, 90, 58, 84, 62, 90, 66, 127, 84, 60, 66, 126, 44, 108, 70, 165, 74, 114, 62, 126, 60, 84, 78, 186
Offset: 1
Examples
SPM4Sigma(240) = (1+2+4+8+16)*(-1+3)*(1+5).
Crossrefs
Cf. A126852.
Programs
-
Maple
A126851 := proc(n) local r,mprime,piri,iprod,pi,ri,si; r := A007814(n) ; mprime := n/2^r ; iprod := 1 ; if mprime > 1 then for piri in ifactors(mprime)[2] do pi := op(1,piri) ; ri := op(2,piri) ; add(pi^si,si=1..ri) + (-1)^( (pi-1)/2) ;; iprod := iprod*% ; end do: end if; %*A038712(n) ; end proc: seq(A126851(n),n=1..40) ; # R. J. Mathar, Mar 13 2024
Formula
SPM4Sigma(n) = (2^r-1)*Product_i (p_i^(r_i+1)-p_i)/(p_i-1)+(-1)^(1/2*(p_i-1)) = (2^r-1)*Product_{i=1 mod 4} ((p_i^(r_i+1)-p_i)/(p_i-1)+1)*Product_{i=3 mod 4} ((p_i^(r_i+1)-p_i)/(p_i-1)-1)
a(2^n) = A000225(n+1). - R. J. Mathar, Mar 13 2024
A038712(n) | a(n). - R. J. Mathar, Mar 13 2024
Extensions
a(2) and a(7) corrected, sequence extended beyond a(20). - R. J. Mathar, Mar 13 2024
Comments