cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A125141 a(1) = 2; for n>1, a(n)=SENSigma(a(n-1)), where SENSigma(m) = (-1)^((Sum_i r_i)+Omega(m))*Sum_{d|m} (-1)^((Sum_j Max(r_j))+Omega(d))*d = Product_i (Sum_{1<=s_i<=r_i} p_i^s_i)+(-1)^(r_i+1) if m=Product_i p_i^r_i, d=Product_j p_j^r_j, p_j^max(r_j) is the largest power of p_j dividing m.

Original entry on oeis.org

2, 3, 4, 5, 6, 12, 20, 30, 72, 165, 288, 693, 1056, 3024, 9280, 22500, 42845, 60480, 240000, 794580, 1814400, 7040040, 26352000, 98654400, 321552000, 1260230400, 5311834416, 17570520000, 75087810000, 325180275840, 1526817600000
Offset: 1

Views

Author

Yasutoshi Kohmoto, Jan 12 2007

Keywords

Comments

By "Max(r_j)" is meant the following: if d|m, d=p^e*q^f, m=p^x*q^y*r^z then Max(e)=x, Max(f)=y.

Crossrefs

Programs

  • Maple
    SENSigma := proc(n) local ifs,i,a,r,p ; ifs := ifactors(n)[2] ; a := 1 ; for i from 1 to nops(ifs) do r := op(2,op(i,ifs)) ; p := op(1,op(i,ifs)) ; a := a*(p*(1-p^r)/(1-p)-(-1)^r) ; od ; RETURN(a) ; end: A125141 := proc(nmax) local a ; a := [2] ; while nops(a)< nmax do a := [op(a),SENSigma(op(-1,a))] ; od ; RETURN(a) ; end: A125141(40) ; # R. J. Mathar, May 18 2007
  • Mathematica
    SENSigma[n_] := Module[{Ifs, i, a, r, p }, Ifs = FactorInteger[n]; a = 1; For[i = 1, i <= Length[Ifs], i++, r = Ifs[[i, 2]]; p = Ifs[[i, 1]]; a = a(p(1 - p^r)/(1 - p) - (-1)^r)]; Return[a]];
    A125141[nmax_] := Module[{a}, a = {2}; While[Length[a] < nmax, a = Append[a, SENSigma[a[[-1]]]]]; Return[a]];
    A125141[40] (* Jean-François Alcover, Oct 26 2023, after R. J. Mathar *)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 14 2007
More terms from R. J. Mathar, May 18 2007

A126852 a(1) = 8; for n>1, a(n) = SPM4Sigma(a(n-1)).

Original entry on oeis.org

8, 15, 12, 14, 18, 33, 20, 42, 36, 77, 60, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84
Offset: 1

Views

Author

Yasutoshi Kohmoto, Feb 24 2007

Keywords

Comments

After the first 11 terms sequence is constant at 84. - Charles R Greathouse IV, Sep 02 2009

Crossrefs

Cf. A126851.

Formula

a(n) = A126851(a(n-1)).

Extensions

Edited by N. J. A. Sloane, May 14 2007
Index in NAME corrected by R. J. Mathar, Mar 13 2024

A125142 a(n) = smallest k such that SEPSigma^{k}(n)=1, or -1 if no such k exists. Here SEPSigma(m) = (-1)^(Sum_i r_i)*Sum_{d|m} (-1)^(Sum_j Max(r_j))*d =Product_i (Sum_{1<=s_i<=r_i} p_i^s_i)+(-1)^r_i where m=Product_i p_i^r_i, d=Product_j p_j^r_j, p_j^max(r_j) is the largest power of p_j dividing m.

Original entry on oeis.org

0, 1, 2, 4, 5, 2, 3, 6, 6, 5, 6, 4, 5, 3, 7, 9, 10, 6, 7, 7, 5, 6, 7, 6, 9, 5, 8, 6, 7, 7, 8, 11, 8, 10, 7, -1, -1, 7, 7, -1, -1, 5, 6, 8, -1, 7, 8, 9, -1, 9, 12, -1, -1, 8, -1, 8, -1, 7, 8, 9, 10, 8, 8, 10, 10, 8, 9, 12, 9, 7, 8, -1, -1, -1, 9, 9, 10, 7, 8, 12, -1, -1, -1, -1, 11, 6, 9, 11, 12, -1
Offset: 1

Views

Author

Yasutoshi Kohmoto, Jan 12 2007, Jan 29 2007

Keywords

Comments

By "Max(r_j)" is meant the following: if d|m, d=p^e*q^f, m=p^x*q^y*r^z then Max(e)=x, Max(f)=y.
For n=36, no k exists which matches the definition since the iteration reaches a cycle that toggles between 168 and 156 ad infinitum: 36->91->72->169->183->120->104->156->168->156-> etc. In the same fashion, no solutions exist for n=37,40,41,45,49,52,53,... - R. J. Mathar, Jun 07 2007

Examples

			SEPSigma^{5}(5)=1, so a(5)=5: 5 -> 4 -> 7 -> 6 -> 2 -> 1
		

Crossrefs

Programs

  • Maple
    A125140 := proc(n) local ifs,i,a,r,p ; ifs := ifactors(n)[2] ; a := 1 ; for i from 1 to nops(ifs) do r := op(2,op(i,ifs)) ; p := op(1,op(i,ifs)) ; a := a*(p*(1-p^r)/(1-p)+(-1)^r) ; od ; RETURN(a) ; end: A125142 := proc(n) local a,nsep; nsep := n ; a :=0 ; while nsep <> 1 do a := a+1 ; nsep := A125140(nsep) ; od ; RETURN(a) ; end: for n from 1 to 80 do printf("%d, ",A125142(n)) ; od ; # R. J. Mathar, Jun 07 2007

Extensions

Edited by N. J. A. Sloane at the suggestions of Andrew S. Plewe and R. J. Mathar, May 14 2007, Jun 10 2007
More terms from R. J. Mathar, Jun 07 2007
More terms from R. J. Mathar, Oct 20 2009
Showing 1-3 of 3 results.