cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126932 Binomial transform of A127358.

Original entry on oeis.org

1, 4, 15, 55, 199, 714, 2547, 9048, 32043, 113212, 399265, 1406079, 4946137, 17383162, 61048359, 214270215, 751691811, 2636004228, 9240836733, 32386215981, 113478349989, 397544907486, 1392493797765, 4876916883090, 17078574481941, 59802541979964
Offset: 0

Views

Author

Philippe Deléham, Mar 17 2007

Keywords

Comments

Hankel transform is (-1)^n.
Row sums of the Riordan array ((1-2*x)/(1+x+x^2), x/(1+x+x^2))^(-1). - Paul Barry, Nov 06 2008

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (Sqrt(1-2*x-3*x^2) + 3*(1-3*x))/(2*(2-13*x+21*x^2)) )); // G. C. Greubel, Jan 29 2020
    
  • Maple
    seq(coeff(series( (sqrt(1-2*x-3*x^2) + 3*(1-3*x))/(2*(2-13*x+21*x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 29 2020
  • Mathematica
    CoefficientList[Series[(Sqrt[-3*x^2-2*x+1]-3*(3*x-1))/(2*(21*x^2-13*x+2)), {x, 0, 30}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec( (sqrt(1-2*x-3*x^2) + 3*(1-3*x))/(2*(2-13*x+21*x^2)) ) \\ G. C. Greubel, Jan 29 2020
    
  • Sage
    def A126932_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (sqrt(1-2*x-3*x^2) + 3*(1-3*x))/(2*(2-13*x+21*x^2)) ).list()
    A126932_list(30) # G. C. Greubel, Jan 29 2020

Formula

a(n+1) = 3*a(n) + A059738(n) with a(0)=1.
G.f: (sqrt(1-2*x-3*x^2) + 3*(1-3*x))/(2*(2-13*x+21*x^2)). - Paul Barry, Nov 06 2008
Conjecture: +2*n*a(n) -11*n*a(n-1) +4*(2*n+3)*a(n-2) +21*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ 3 * 7^n / 2^(n+1). - Vaclav Kotesovec, Feb 12 2014

Extensions

Corrected and extended by Vincenzo Librandi, Feb 13 2014