A126954
Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) for k >= 1.
Original entry on oeis.org
1, 3, 1, 10, 4, 1, 34, 15, 5, 1, 117, 54, 21, 6, 1, 405, 192, 81, 28, 7, 1, 1407, 678, 301, 116, 36, 8, 1, 4899, 2386, 1095, 453, 160, 45, 9, 1, 17083, 8380, 3934, 1708, 658, 214, 55, 10, 1, 59629, 29397, 14022, 6300, 2580, 927, 279, 66, 11, 1
Offset: 0
Triangle begins:
1;
3, 1;
10, 4, 1;
34, 15, 5, 1;
117, 54, 21, 6, 1;
405, 192, 81, 28, 7, 1;
1407, 678, 301, 116, 36, 8, 1;
4899, 2386, 1095, 453, 160, 45, 9, 1;
-
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 3, 1], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
A141223
Expansion of 1/(sqrt(1-4*x)*(1-3*x*c(x))), where c(x) is the g.f. of A000108.
Original entry on oeis.org
1, 5, 24, 113, 526, 2430, 11166, 51105, 233190, 1061510, 4822984, 21879786, 99135076, 448707992, 2029215114, 9170247393, 41416383366, 186957126702, 843575853984, 3804927658878, 17156636097156, 77339426905812, 348553445817084, 1570548863858778, 7075531788285276
Offset: 0
-
CoefficientList[Series[(3-12x+Sqrt[1-4x])/(4-34x+72x^2),{x,0,100}],x] (* Emanuele Munarini, Apr 01 2011 *)
-
makelist(sum(binomial(n+k,k)*3^(n-k),k,0,n),n,0,12); /* Emanuele Munarini, Apr 01 2011 */
A158793
Triangle read by rows: product of A130595 and A092392 considered as infinite lower triangular arrays.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 7, 4, 1, 1, 19, 9, 5, 1, 1, 51, 26, 11, 6, 1, 1, 141, 70, 34, 13, 7, 1, 1, 393, 197, 92, 43, 15, 8, 1, 1, 1107, 553, 265, 117, 53, 17, 9, 1, 1, 3139, 1570, 751, 346, 145, 64, 19, 10, 1, 1, 8953, 4476, 2156, 991, 441, 176, 76, 21, 11, 1, 1
Offset: 0
First rows of the triangle:
1;
1, 1;
3, 1, 1;
7, 4, 1, 1;
19, 9, 5, 1, 1;
51, 26, 11, 6, 1, 1;
141, 70, 34, 13, 7, 1, 1;
393, 197, 92, 43, 15, 8, 1, 1;
1107, 553, 265, 117, 53, 17, 9, 1, 1;
3139, 1570, 751, 346, 145, 64, 19, 10, 1, 1;
8953, 4476, 2156, 991, 441, 176, 76, 21, 11, 1, 1;
-
A158793 := proc (n, k)
add((-1)^(n+j)*binomial(n, j)*binomial(2*j-k, j-k), j = k..n);
end proc:
seq(seq(A158793(n, k), k = 0..n), n = 0..10); # Peter Bala, Jul 13 2021
-
T[n_, k_] := (-1)^(k + n) Binomial[n, k] HypergeometricPFQ[{k/2 + 1/2, k/2 + 1, k - n}, {k + 1, k + 1}, 4];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Jul 17 2021 *)
A301477
T(n,k) = Sum_{j=0..n-k} H(n,j)*2^k with H(n,k) = binomial(n,k)* hypergeom([-k/2, 1/2-k/2], [2-k+n], 4), for 0 <= k <= n, triangle read by rows.
Original entry on oeis.org
1, 2, 2, 5, 6, 4, 13, 18, 16, 8, 35, 52, 56, 40, 16, 96, 150, 180, 160, 96, 32, 267, 432, 560, 568, 432, 224, 64, 750, 1246, 1708, 1904, 1680, 1120, 512, 128, 2123, 3600, 5152, 6160, 6048, 4736, 2816, 1152, 256, 6046, 10422, 15432, 19488, 20736, 18240, 12864, 6912, 2560, 512
Offset: 0
1
2, 2
5, 6, 4
13, 18, 16, 8
35, 52, 56, 40, 16
96, 150, 180, 160, 96, 32
267, 432, 560, 568, 432, 224, 64
750, 1246, 1708, 1904, 1680, 1120, 512, 128
2123, 3600, 5152, 6160, 6048, 4736, 2816, 1152, 256
-
H := (n,k) -> binomial(n,k)*hypergeom([-k/2,1/2-k/2],[2-k+n], 4):
T := (n,k) -> add(simplify(H(n,j)*2^k), j=0..n-k):
seq(seq(T(n,k), k=0..n), n=0..9);
-
s={};For[n=0,n<13,n++,For[k=0,kDetlef Meya, Oct 03 2023 *)
Showing 1-4 of 4 results.
Comments