A126934 Define an array by d(m, 0) = 1, d(m, 1) = m; d(m, k) = (m - k + 1) d(m+1, k-1) - (k-1) (m+1) d(m+2, k-2). Sequence gives d(0,2n).
1, -2, 36, -1800, 176400, -28576800, 6915585600, -2337467932800, 1051860569760000, -607975409321280000, 438958245529964160000, -387161172557428389120000, 409616520565759235688960000, -512020650707199044611200000000, 746526108731096207043129600000000, -1255656914885703820246543987200000000
Offset: 0
Keywords
References
- V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..150
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 131.
- S. Goodenough, C. Lavault, On subsets of Riordan subgroups and Heisenberg--Weyl algebra, arXiv preprint arXiv:1404.1894 [cs.DM], 2014-2016.
- S. Goodenough, C. Lavault, Overview on Heisenberg—Weyl Algebra and Subsets of Riordan Subgroups, The Electronic Journal of Combinatorics, 22(4) (2015), #P4.16.
Programs
-
Magma
function T(n,k) if k eq 0 then return 1; elif k eq 1 then return n; else return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2); end if; return T; end function; [T(0,2*n): n in [0..15]]; // G. C. Greubel, Jan 28 2020
-
Maple
T:= proc(n, k) option remember; if k=0 then 1 elif k=1 then n else (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) fi; end: seq(T(0, 2*k), n=0..15); # G. C. Greubel, Jan 28 2020
-
Mathematica
nn=40;b=(1-(1-2x^2)^(1/2))/x;Select[Range[0,nn]!CoefficientList[Series[1/(1-x b),{x,0,nn}],x],#>0&]*Table[(-1)^(n),{n,0,nn/2}] (* Geoffrey Critzer, Feb 24 2012 *) T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, n, (n-k+1)*T[n+1, k-1] - (k-1)*(n+1)* T[n+2, k-2]]]; Table[T[0, 2*n], {n,0,15}] (* G. C. Greubel, Jan 28 2020 *)
-
PARI
T(n,k) = if(k==0, 1, if(k==1, n, (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) )); vector(15, n, T(0,2*(n-1)) ) \\ G. C. Greubel, Jan 28 2020
-
Sage
@CachedFunction def T(n, k): if (k==0): return 1 elif (k==1): return n else: return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) [T(0, 2*n) for n in (0..15)] # G. C. Greubel, Jan 28 2020
Formula
E.g.f. for positive values with interpolated zeros:
(1-2*x^2)^(-1/2) which is exp(log(1/(1-x*G(x)))) where
G(x) is the e.g.f. for A036770. - Geoffrey Critzer, Feb 24 2012
a(n) = (-8)^n * gamma(n + 1/2)^2 / Pi. - Daniel Suteu, Jan 06 2017
Comments