cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A165888 Primes arising in A126938.

Original entry on oeis.org

5, 13, 31, 61, 103, 139, 157, 181, 211, 277, 349, 373, 409, 463, 547, 613, 631, 691, 811, 937, 1021, 1069, 1129, 1201, 1279, 1399, 1549, 1663, 1723, 1753, 1873, 1993, 2089, 2281, 2467, 2617, 2707, 2749, 2917, 3163, 3301, 3457, 3607, 3691, 3793, 3877, 3919
Offset: 1

Views

Author

Zak Seidov, Sep 29 2009

Keywords

Crossrefs

Cf. A126938.

Formula

a(n)=(A126938(n)+A126938(n+1))/2.

A191473 Let a(1) = 3. For n > 1, a(n) is the smallest prime p > a(n-1) such that q = (a(n-1) + p)/4 is prime.

Original entry on oeis.org

3, 5, 7, 13, 31, 37, 79, 109, 127, 157, 199, 229, 367, 397, 607, 661, 727, 829, 967, 997, 1039, 1213, 1399, 1693, 1759, 1789, 1999, 2053, 2143, 2221, 2383, 2389, 2503, 3229, 3319, 3469, 3823, 4093, 4159, 4357, 4591, 4597, 4639, 4789, 4903, 4933, 5431, 5581
Offset: 1

Views

Author

Zak Seidov, Aug 27 2012

Keywords

Comments

Corresponding values of q: 2, 3, 5, 11, 17, 29, 47, 59, 71, 89, 107.

Crossrefs

Cf. A126938.

Programs

  • Mathematica
    p=3; s={p}; Do[q=Prime[n]; If[PrimeQ[(p+q)/4], AppendTo[s,q]; p=q], {n, 3, 1000}]; s
    nxt[n_]:=Module[{p=NextPrime[n]},While[!PrimeQ[(n+p)/4],p=NextPrime[ p]]; p]; NestList[nxt,3,50] (* Harvey P. Dale, Nov 25 2013 *)

A367855 The slowest increasing sequence of semiprimes such that a(n-1) + a(n) is prime.

Original entry on oeis.org

4, 9, 10, 21, 22, 25, 34, 39, 58, 69, 82, 85, 94, 129, 134, 143, 194, 203, 206, 213, 218, 221, 278, 291, 302, 305, 314, 327, 334, 339, 362, 365, 386, 411, 446, 473, 566, 597, 626, 633, 674, 687, 694, 745, 766, 793, 1018, 1081, 1126, 1141, 1198, 1219, 1402, 1417, 1486, 1513, 1654, 1689, 1718, 1731
Offset: 1

Views

Author

Zak Seidov and Robert Israel, Dec 02 2023

Keywords

Comments

a(2*n) is odd and a(2*n-1) is twice a prime where n is a positive integer. - David A. Corneth, Dec 03 2023

Examples

			a(4) = 21 because a(3) = 10, 21 = 3 * 7 is a semiprime > 10, 10 + 21 = 31 is prime, and no smaller semiprime > 10 works.
		

Crossrefs

Programs

  • Maple
    R:= 4: s:= 4:
    for count from 2 to 100 do
      for t from s+1 by 2 do
        if isprime(s+t) and numtheory:-bigomega(t) = 2 then
          R:= R,t; s:= t; break
        fi
      od
    od:
    R;
  • Mathematica
    s = {q = 4}; Do[p = q + 1; While[ PrimeOmega[p] != 2, p = p + 2]; AppendTo[s, q = p], {120}]; s

A126950 a(1) = 1; for n>1, a(n) = the smallest number p > a(n-1) such that (a(n-1)+p)/2 is a cube.

Original entry on oeis.org

1, 15, 39, 89, 161, 271, 415, 609, 849, 1151, 1511, 1945, 2449, 3039, 3711, 4481, 5345, 6319, 7399, 8601, 9921, 11375, 12959, 14689, 16561, 18591, 20775, 23129, 25649, 28351, 31231, 34305, 37569, 41039, 44711, 48601, 52705, 57039, 61599, 66401
Offset: 1

Views

Author

Zak Seidov, Mar 18 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[((2*n +1)*(2*n^2 + 2*n -1)+ 5*(-1)^n)/4,{n,83}]

Formula

a(n) = ((2*n +1)*(2*n^2 + 2*n -1)+ 5*(-1)^n)/4; a(n) = a(n-1)+2n^3; G.f. = (1 - 2*x + 14*x^2 - 2*x^3 + x^4)/((1 + x)(1 - x)^4).
Showing 1-4 of 4 results.