cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126972 Number of distinct values taken by the entropy for permutations of [1..n], where the entropy of a permutation pi is Sum_{k=1..n} (pi(k)-k)^2.

Original entry on oeis.org

1, 1, 2, 4, 11, 21, 36, 57, 85, 121, 166, 221, 287, 365, 456, 561, 681, 817, 970, 1141, 1331, 1541, 1772, 2025, 2301, 2601, 2926, 3277, 3655, 4061, 4496, 4961, 5457, 5985, 6546, 7141, 7771, 8437, 9140, 9881, 10661, 11481, 12342, 13245, 14191, 15181, 16216
Offset: 0

Views

Author

Jeff Boscole (jazzerciser(AT)hotmail.com), Mar 20 2007

Keywords

Comments

Also, number of distinct values taken by Sum_{k=1..n} k * pi(k). - Joerg Arndt, Apr 22 2011
For n>=4, Sum_{k=1..n} k * pi(k) takes every value in the interval [A000292(n),A000330(n)] (cf. A175929). - Max Alekseyev, Jan 28 2012

Examples

			For 24 permutations of {1,2,3,4}, the set of sum(k=1..n, (pi(k)-k)^2) yields {0,2,4,6,8,10,12,14,16,18,20} (11 distinct values).
For 120 permutations of {1,2,3,4,5}, the set of sum(k=1..n, (pi(k)-k)^2) yields {0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,36,38,40} (21 values).
		

Crossrefs

Cf. A007290 (largest permutation entropy), A000292 (average permutation entropy), A135298, A175929.

Programs

  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,1,2,4,11,21,36,57},50] (* Harvey P. Dale, Jun 01 2016; a(0)=1 prepended by Georg Fischer, Apr 10 2019 *)
  • PARI
    A126972(n)=(n!=3)+binomial(n+1,3)  \\ M. F. Hasler, Jan 29 2012
    
  • PARI
    /* the following inefficient code is for illustrative purpose only: */ A126972(n)={my(u=0,v=vector(n,i,i),t); sum(k=1,n!, !bittest(u,t=norml2(numtoperm(n,k)-v)) & u+=1<M. F. Hasler, Jan 29 2012 */

Formula

For n>=4, a(n) = 1 + binomial(n+1,3) = 1 + A000330(n) - A000292(n) = 1 + A000292(n-1).
G.f.: -(x^7-4*x^6+6*x^5-4*x^4+2*x^3-4*x^2+3*x-1)/(x-1)^4. - M. F. Hasler, Jan 12 2012

Extensions

Formula corrected by Joel B. Lewis, Aug 18 2009
Terms corrected, more terms added, and definition clarified by Joerg Arndt, Apr 22 2011
a(0)=1 prepended by Alois P. Heinz, Jan 22 2019