A126972 Number of distinct values taken by the entropy for permutations of [1..n], where the entropy of a permutation pi is Sum_{k=1..n} (pi(k)-k)^2.
1, 1, 2, 4, 11, 21, 36, 57, 85, 121, 166, 221, 287, 365, 456, 561, 681, 817, 970, 1141, 1331, 1541, 1772, 2025, 2301, 2601, 2926, 3277, 3655, 4061, 4496, 4961, 5457, 5985, 6546, 7141, 7771, 8437, 9140, 9881, 10661, 11481, 12342, 13245, 14191, 15181, 16216
Offset: 0
Examples
For 24 permutations of {1,2,3,4}, the set of sum(k=1..n, (pi(k)-k)^2) yields {0,2,4,6,8,10,12,14,16,18,20} (11 distinct values). For 120 permutations of {1,2,3,4,5}, the set of sum(k=1..n, (pi(k)-k)^2) yields {0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,36,38,40} (21 values).
Links
- J. Sack and H. Ăšlfarsson, Refined inversion statistics on permutations, arXiv preprint arXiv:1106.1995 [math.CO], 2011-2012.
- Zhi-Wei Sun, On permutations of {1, ..., n} and related topics, arXiv:1811.10503 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{4,-6,4,-1},{1,1,2,4,11,21,36,57},50] (* Harvey P. Dale, Jun 01 2016; a(0)=1 prepended by Georg Fischer, Apr 10 2019 *)
-
PARI
A126972(n)=(n!=3)+binomial(n+1,3) \\ M. F. Hasler, Jan 29 2012
-
PARI
/* the following inefficient code is for illustrative purpose only: */ A126972(n)={my(u=0,v=vector(n,i,i),t); sum(k=1,n!, !bittest(u,t=norml2(numtoperm(n,k)-v)) & u+=1<
M. F. Hasler, Jan 29 2012 */
Formula
G.f.: -(x^7-4*x^6+6*x^5-4*x^4+2*x^3-4*x^2+3*x-1)/(x-1)^4. - M. F. Hasler, Jan 12 2012
Extensions
Formula corrected by Joel B. Lewis, Aug 18 2009
Terms corrected, more terms added, and definition clarified by Joerg Arndt, Apr 22 2011
a(0)=1 prepended by Alois P. Heinz, Jan 22 2019
Comments