cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126979 a(n) = 24*n + 233.

Original entry on oeis.org

233, 257, 281, 305, 329, 353, 377, 401, 425, 449, 473, 497, 521, 545, 569, 593, 617, 641, 665, 689, 713, 737, 761, 785, 809, 833, 857, 881, 905, 929, 953, 977, 1001, 1025, 1049, 1073, 1097, 1121, 1145, 1169, 1193, 1217, 1241, 1265, 1289, 1313, 1337, 1361
Offset: 0

Views

Author

Robert H Barbour, Mar 20 2007, Jun 12 2007

Keywords

Comments

Superhighway created by 'LQTL Ant' L45R135L45R135 from iteration 233 where the Ant moves in a 'Moore neighborhood' (nine cells), the L indicates a left turn, the R a right turn, and the numerical value is the turn angle in degrees.

References

  • P. Sakar, "A Brief History of Cellular Automata," ACM Computing Surveys, vol. 32, 2000.
  • S. Wolfram, A New Kind of Science, 1st ed. Il.: Wolfram Media Inc., 2002.

Crossrefs

Cf. A031041, A017581, A126978, A126980. Has many terms in common with A031041.

Programs

  • GAP
    a:=[233, 257];; for n in [3..60] do a[n]:=2*a[n-1]-a[n-2]; od; a; # G. C. Greubel, May 28 2019
  • Magma
    I:=[233, 257]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..60]]; // G. C. Greubel, May 28 2019
    
  • Mathematica
    Table[24*n + 233, {n, 0, 60}] (* Stefan Steinerberger, Jun 17 2007 *)
    LinearRecurrence[{2,-1}, {233,257}, 60] (* G. C. Greubel, May 28 2019 *)
  • PARI
    my(x='x+O('x^60)); Vec((233-209*x)/(1-x)^2) \\ G. C. Greubel, May 28 2019
    
  • Sage
    ((233-209*x)/(1-x)^2).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, May 28 2019
    

Formula

From Chai Wah Wu, May 30 2016: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 1.
G.f.: (233 - 209*x)/(1 - x)^2. (End)
E.g.f.: (233 + 24*x)*exp(x). - G. C. Greubel, May 28 2019

Extensions

More terms from Stefan Steinerberger, Jun 17 2007