cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127020 Let f(n) = exp(Pi*sqrt(n)); sequence gives numbers n such that ceiling(f(n))-f(n) < 1/10.

Original entry on oeis.org

6, 7, 13, 17, 18, 22, 25, 27, 28, 31, 37, 43, 58, 59, 67, 74, 84, 88, 94, 125, 127, 129, 136, 149, 162, 163, 174, 177, 183, 213, 217, 232, 240, 247, 267, 273, 279, 282, 295, 301, 304, 307, 321, 322, 326, 333, 337, 352, 355, 357, 365, 385, 386, 388, 389, 396, 439
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(500)); R:= RealField(); [n: n in [1..500] | Ceiling(Exp(Pi(R)*Sqrt(n))) - Exp(Pi(R)*Sqrt(n)) lt 1/10]; // G. C. Greubel, May 31 2019
  • Mathematica
    a = {}; Do[If[(1 - (Exp[Pi Sqrt[x]] - Floor[Exp[Pi Sqrt[x]]]) > 0) && (1 - ( Exp[Pi Sqrt[x]] - Floor[Exp[Pi Sqrt[x]]])< 10^(-1)), AppendTo[a, x]], {x, 1, 1000}]; a
    epQ[n_]:=Module[{c=Exp[Pi Sqrt[n]]},Ceiling[c]-c<1/10]; Select[ Range[ 500], epQ] (* Harvey P. Dale, May 10 2015 *)
  • PARI
    default(realprecision, 500); c(n) = exp(Pi*sqrt(n));
    for(n=1, 500, if( ceil(c(n)) - c(n) <1/10, print1(n", "))) \\ G. C. Greubel, May 31 2019