cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127040 a(n) = binomial(floor((3n+4)/2),floor(n/2)).

Original entry on oeis.org

1, 1, 5, 6, 28, 36, 165, 220, 1001, 1365, 6188, 8568, 38760, 54264, 245157, 346104, 1562275, 2220075, 10015005, 14307150, 64512240, 92561040, 417225900, 600805296, 2707475148, 3910797436, 17620076360, 25518731280, 114955808528
Offset: 0

Views

Author

T. D. Noe, Jan 03 2007

Keywords

Comments

With offset 2, the number of compositions of n into floor(n/2) parts, which is an upper bound for A007874.

Crossrefs

Cf. A004319 (bisection), A025174 (bisection), A099578.

Programs

  • Maple
    seq(sum(binomial(n+k, k-1), k=0..ceil((n+1)/2)), n=0..28); # Zerinvary Lajos, Apr 11 2007
  • Mathematica
    CoefficientList[Series[(-1 + (2 Cos[1/3 ArcSin[(3 Sqrt[3] x)/2]])/Sqrt[4 - 27 x^2] + 3 x^3 Hypergeometric2F1[4/3, 5/3, 5/2, (27 x^2)/4])/(3 x^2), {x, 0, 20}], x] (* Benedict W. J. Irwin, Aug 16 2016 *)
    Table[Binomial[Floor[(3 n + 4)/2], Floor[n/2]], {n, 0, 28}] (* Michael De Vlieger, Aug 18 2016 *)
  • PARI
    a(n) = binomial((3*n+4)\2, n\2); \\ Michel Marcus, Sep 09 2016

Formula

From Benedict W. J. Irwin, Aug 16 2016: (Start)
G.f.: (-1 + (2*cos(arcsin(3*sqrt(3)*x/2)/3))/sqrt(4-27*x^2) + 3*x^3*2F1(4/3,5/3;5/2;27*x^2/4))/(3*x^2).
E.g.f.: 2F3(4/3,5/3;1/2,3/2,2;27*x^2/16) + x*2F3(4/3,5/3;1,3/2,5/2;27*x^2/16).
(End)
D-finite with recurrence 8*(n+2)*(n+1)*a(n) -84*(n-1)*(n+1)*a(n-1) +6*(-33*n^2+54*n-8)*a(n-2) +9*(63*n^2-63*n-16)*a(n-3) +108*(3*n-5)*(3*n-7)*a(n-4)=0. - R. J. Mathar, Feb 08 2021