cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127057 Triangle T(n,k), partial row sums of the n-th row of A127013 read right to left.

Original entry on oeis.org

1, 3, 1, 4, 1, 1, 7, 3, 1, 1, 6, 1, 1, 1, 1, 12, 6, 3, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 15, 7, 3, 3, 1, 1, 1, 1, 13, 4, 4, 1, 1, 1, 1, 1, 1, 18, 8, 3, 3, 3, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 16, 10, 6, 3, 3, 1, 1, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 24, 10, 3, 3, 3, 3, 3, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 04 2007

Keywords

Comments

Also partial row sums of the n-th row of A126988 read left to right. - Reinhard Zumkeller, Jan 21 2014

Examples

			The triangle starts
   1;
   3, 1;
   4, 1, 1;
   7, 3, 1, 1;
   6, 1, 1, 1, 1;
  12, 6, 3, 1, 1, 1;
   8, 1, 1, 1, 1, 1, 1;
  15, 7, 3, 3, 1, 1, 1, 1;
  13, 4, 4, 1, 1, 1, 1, 1, 1;
  18, 8, 3, 3, 3, 1, 1, 1, 1, 1; ...
		

Crossrefs

Programs

  • Haskell
    a127057 n k = a127057_tabl !! (n-1) !! (k-1)
    a127057_row n = a127057_tabl !! (n-1)
    a127057_tabl = map (scanr1 (+)) a126988_tabl
    -- Reinhard Zumkeller, Jan 21 2014
    
  • Magma
    A126988:= func< n,k | (n mod k) eq 0 select n/k else 0 >;
    T:= func< n,k | (&+[A126988(n, j): j in [k..n]]) >;
    [[T(n,k): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jun 03 2019
    
  • Mathematica
    A126988[n_, m_]:= If[Mod[n, m]==0, n/m, 0];
    T[n_, m_]:= Sum[A126988[n, j], {j,m,n}];
    Table[T[n, m], {n,1,12}, {m,1,n}]//Flatten (* G. C. Greubel, Jun 03 2019 *)
  • PARI
    A126988(n, k) = if(n%k==0, n/k, 0);
    T(n,k) = sum(j=k,n, A126988(n,j));
    for(n=1, 12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jun 03 2019
    
  • Sage
    def A126988(n, k):
        if (n%k==0): return n/k
        else: return 0
    def T(n,k): return sum(A126988(n,j) for j in (k..n))
    [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jun 03 2019

Formula

T(n,k) = Sum_{i=1..n-k+1} A127013(n,i), n>=1, 1<=k<=n.
T(n,k) = Sum_{i=k..n} A126988(n,i).
Row sums: Sum_{k=1..n} T(n,k) = A038040(n).
T(n,1) = A000203(n).
T = A126988 * M as infinite lower triangular matrices, M = (1; 1, 1; 1, 1, 1; ...).

Extensions

Edited and extended by R. J. Mathar, Jul 23 2008