A127057 Triangle T(n,k), partial row sums of the n-th row of A127013 read right to left.
1, 3, 1, 4, 1, 1, 7, 3, 1, 1, 6, 1, 1, 1, 1, 12, 6, 3, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 15, 7, 3, 3, 1, 1, 1, 1, 13, 4, 4, 1, 1, 1, 1, 1, 1, 18, 8, 3, 3, 3, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 16, 10, 6, 3, 3, 1, 1, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 24, 10, 3, 3, 3, 3, 3, 1, 1
Offset: 1
Examples
The triangle starts 1; 3, 1; 4, 1, 1; 7, 3, 1, 1; 6, 1, 1, 1, 1; 12, 6, 3, 1, 1, 1; 8, 1, 1, 1, 1, 1, 1; 15, 7, 3, 3, 1, 1, 1, 1; 13, 4, 4, 1, 1, 1, 1, 1, 1; 18, 8, 3, 3, 3, 1, 1, 1, 1, 1; ...
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
Programs
-
Haskell
a127057 n k = a127057_tabl !! (n-1) !! (k-1) a127057_row n = a127057_tabl !! (n-1) a127057_tabl = map (scanr1 (+)) a126988_tabl -- Reinhard Zumkeller, Jan 21 2014
-
Magma
A126988:= func< n,k | (n mod k) eq 0 select n/k else 0 >; T:= func< n,k | (&+[A126988(n, j): j in [k..n]]) >; [[T(n,k): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jun 03 2019
-
Mathematica
A126988[n_, m_]:= If[Mod[n, m]==0, n/m, 0]; T[n_, m_]:= Sum[A126988[n, j], {j,m,n}]; Table[T[n, m], {n,1,12}, {m,1,n}]//Flatten (* G. C. Greubel, Jun 03 2019 *)
-
PARI
A126988(n, k) = if(n%k==0, n/k, 0); T(n,k) = sum(j=k,n, A126988(n,j)); for(n=1, 12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jun 03 2019
-
Sage
def A126988(n, k): if (n%k==0): return n/k else: return 0 def T(n,k): return sum(A126988(n,j) for j in (k..n)) [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jun 03 2019
Formula
Extensions
Edited and extended by R. J. Mathar, Jul 23 2008
Comments