cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127136 Triangle read by rows: T(n,k) is the number of endofunctions on n objects with k components.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 9, 7, 2, 1, 20, 17, 7, 2, 1, 51, 48, 21, 7, 2, 1, 125, 127, 60, 21, 7, 2, 1, 329, 352, 174, 65, 21, 7, 2, 1, 862, 963, 504, 190, 65, 21, 7, 2, 1, 2311, 2689, 1456, 570, 196, 65, 21, 7, 2, 1, 6217, 7496, 4212, 1684, 590, 196, 65, 21, 7, 2, 1
Offset: 1

Views

Author

Keywords

Comments

For k > n/2, T(n,k) = T(n-1,k-1). - Geoffrey Critzer, Oct 13 2012

Examples

			For n = 3, the 7 endofunctions are (1,2,3) -> (1,1,1), (1,1,2), (1,2,1), (2,1,1), (1,2,3), (1,3,2) and (2,3,1). The components are respectively 123, 123, 13|2, 123, 1|2|3, 1|23 and 123; the number of components is thus 1, 1, 2, 1, 2, 3, 2, 1, so row 3 is 4,2,1.
The triangle starts:
   1;
   2,  1;
   4,  2,  1;
   9,  7,  2,  1;
  20, 17,  7,  2,  1;
		

Crossrefs

Cf. A001372 (row sums), A127124, A127125, A002861 (first column).

Programs

  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,1,30}]],1];CoefficientList[Series[Product[1/(1-y x^i)^c[[i]],{i,1,nn-1}],{x,0,10}],{x,y}]//Grid  (* Geoffrey Critzer, Oct 13 2012, after code given by Robert A. Russell in A000081 *)

Formula

G.f.: Product_{k>=1} 1/(1 - x^k*y)^A002861(k).

Extensions

More terms from Geoffrey Critzer, Oct 13 2012
Corrected and extended by Alois P. Heinz, May 24 2013