cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127206 Numbers k such that k^j + (k+1)^j is prime for j = 1, 2, 4, 8.

Original entry on oeis.org

1, 765, 39269, 70260, 71399, 85764, 100079, 167789, 218229, 307020, 388449, 468945, 514760, 553400, 568904, 782595, 826284, 1160199, 1220430, 1403775, 1633020, 1714739, 1727930, 1788144, 1932900, 1958705, 2023119, 2037450, 2178804, 2185520, 2193969, 2238474, 2264774
Offset: 1

Views

Author

Zak Seidov, Mar 28 2007

Keywords

Comments

k^j + (k+1)^j is prime only for j = power of 2.
Subset of A128780 which is a subset of A068501.

Examples

			{765 + 766, 765^2 + 766^2, 765^4 + 766^4, 765^8 + 766^8} = {1531, 1171981, 686770904161, 235828747162526935093921}, all prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..3*10^6]| IsPrime(2*n+1) and IsPrime(n^2+(n+1)^2) and IsPrime(n^4+(n+1)^4) and IsPrime(n^8+(n+1)^8)]; // Vincenzo Librandi, Nov 18 2018
  • Mathematica
    Do[If[PrimeQ[2n + 1] && PrimeQ[n^2 + (n+1)^2] && PrimeQ[n^4 + (n+1)^4] && PrimeQ[n^8 + (n+1)^8], Print[n]], {n, 5*10^6}] (* Ryan Propper, Mar 30 2007 *)

Extensions

More terms from Ryan Propper, Mar 30 2007