A127210 a(n) = 3^n*Lucas(n), where Lucas = A000204.
3, 27, 108, 567, 2673, 13122, 63423, 308367, 1495908, 7263027, 35252253, 171124002, 830642283, 4032042867, 19571909148, 95004113247, 461159522073, 2238515585442, 10865982454983, 52744587633927, 256027604996628, 1242784103695227, 6032600756055333, 29282859201423042
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1445
- Ivica Martinjak, Two Extensions of the Sury's Identity, arXiv:1508.01444 [math.CO], 2015.
- Index entries for linear recurrences with constant coefficients, signature (3, 9).
Programs
-
Magma
[3^n*Lucas(n): n in [1..30]]; // Vincenzo Librandi, Aug 07 2015
-
Mathematica
Table[3^n Tr[MatrixPower[{{1, 1}, {1, 0}}, x]], {x, 1, 20}] Table[3^n LucasL[n], {n, 25}] (* Vincenzo Librandi, Aug 07 2015 *)
-
PARI
lucas(n) = fibonacci(n-1) + fibonacci(n+1); vector(30, n, 3^n*lucas(n)) \\ Michel Marcus, Aug 07 2015
Formula
a(n) = Trace of matrix [({3,3},{3,0})^n] = 3^n * Trace of matrix [({1,1},{1,0})^n].
From R. J. Mathar, Oct 27 2008: (Start)
a(n) = 3*a(n-1) + 9*a(n-2).
G.f.: 3*x*(1 + 6*x)/(1 - 3*x - 9*x^2).
Extensions
More terms from Michel Marcus, Aug 07 2015