A127213 a(n) = 6^n*Lucas(n), where Lucas = A000204.
6, 108, 864, 9072, 85536, 839808, 8118144, 78941952, 765904896, 7437339648, 72196614144, 700923912192, 6804621582336, 66060990332928, 641332318961664, 6226189565755392, 60445100877152256, 586813429630107648
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,36).
Programs
-
Magma
[6^n*Lucas(n): n in [1..30]]; // G. C. Greubel, Dec 18 2017
-
Mathematica
Table[6^n Tr[MatrixPower[{{1, 1}, {1, 0}}, x]], {x, 1, 20}] Table[6^n*LucasL[n], {n,1,50}] (* G. C. Greubel, Dec 18 2017 *) LinearRecurrence[{6,36},{6,108},20] (* Harvey P. Dale, Jan 20 2024 *)
-
PARI
x='x+O('x^30); Vec(-6*x*(12*x+1)/(36*x^2+6*x-1)) \\ G. C. Greubel, Dec 18 2017
Formula
a(n) = Trace of matrix [({6,6},{6,0})^n].
a(n) = 6^n * Trace of matrix [({1,1},{1,0})^n].
From Colin Barker, Sep 02 2013: (Start)
a(n) = 6*a(n-1) + 36*a(n-2).
G.f.: -6*x*(12*x+1)/(36*x^2+6*x-1). (End)