cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A127609 Sequence arising from the factorization of F(n)= A091914(n-1) and L(n)= A127262. F(0)=0, F(1)=1, F(n)=2*F(n-1)+12*F(n-2), L(0)=2, L(1)=2, L(n)=2*L(n-1)+12*L(n-2).

Original entry on oeis.org

2, 1, 40, 28, 976, 16, 21568, 496, 11584, 304, 9868288, 352, 209588224, 6208, 113920, 204544, 94347526144, 8128, 2001299832832, 153856, 49205248, 2747392, 900422667599872, 183808, 19568631218176, 58200064, 874289299456, 69013504
Offset: 1

Views

Author

Miklos Kristof, Apr 03 2007

Keywords

Examples

			F(12)=a(1)*a(2)*a(3)*a(4)*a(6)*a(12)=2*1*40*28*16*352=12615680
F(9)=a(2)*a(6)*a(18)= 1*16*8128=130048
L(12)=a(8)*a(24)=496*183808=91168768
L(21)=a(1)*a(3)*a(7)*a(21)=2*40*21568*49205248=84900703109120
		

Crossrefs

Programs

  • Maple
    with(numtheory): a[1]:=2:a[2]:=1:for n from 3 to 60 do a[n]:=round(evalf((sqrt(13)-1)^degree(cyclotomic(n, x), x) *cyclotomic(n, (7+sqrt(13))/6), 30)) od: seq(a[n], n=1..60);

Formula

a(n)= (sqrt(13)-1)^degree(cyclotomic(n,x),x)*cyclotomic(n,(7+sqrt(13)/6) L(n)=12*F(n-1)+F(n+1) F(2n)=Product(d|2n) a(d), F(2n+1)=Product(d|2n+1) a(2d). L(2n+1)=Product(d|2n+1, a(d)), for k>0: L(2^k*(2n+1))=Product(d|2n+1, a(2^(k+1)*d)). for odd prime p, a(p)=L(p)/2, a(2p)=f(p) a(1)=2, a(2)=1; a(2^(k+1))=L(2^k);

A125816 a(n) = ((1+sqrt(13))^n + (1-sqrt(13))^n)/2.

Original entry on oeis.org

1, 1, 14, 40, 248, 976, 4928, 21568, 102272, 463360, 2153984, 9868288, 45584384, 209588224, 966189056, 4447436800, 20489142272, 94347526144, 434564759552, 2001299832832, 9217376780288, 42450351554560, 195509224472576
Offset: 1

Views

Author

Artur Jasinski, Dec 10 2006

Keywords

Comments

Binomial transform of A001022(powers of 13), with interpolated zeros. - Philippe Deléham, Dec 20 2007
a(n-1) is the number of compositions of n when there are 1 type of 1 and 13 types of other natural numbers. - Milan Janjic, Aug 13 2010

Crossrefs

Cf. A127262. First differences of A091914.

Programs

  • GAP
    a:=[1,1];; for n in [3..30] do a[n]:=2*a[n-1]+12*a[n-2]; od; a; # G. C. Greubel, Aug 02 2019
  • Magma
    I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) +12*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
    
  • Mathematica
    Expand[Table[((1+Sqrt[13])^n +(1-Sqrt[13])^n)/(2), {n,0,30}]] (* Artur Jasinski *)
    LinearRecurrence[{2,12}, {1,1}, 30] (* G. C. Greubel, Aug 02 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1-2*x-12*x^2)) \\ G. C. Greubel, Aug 02 2019
    
  • Sage
    ((1-x)/(1-2*x-12*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019
    

Formula

From Philippe Deléham, Dec 12 2006: (Start)
a(n) = 2*a(n-1) + 12*a(n-2), with a(0)=a(1)=1.
G.f.: (1-x)/(1-2*x-12*x^2). (End)
a(n) = Sum_{k=0..n} A098158(n,k)*13^(n-k). - Philippe Deléham, Dec 20 2007
If p[1]=1, and p[i]=13, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1,(i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n+1)=det A. - Milan Janjic, Apr 29 2010
Showing 1-2 of 2 results.