cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127340 Primes that are the sum of 11 consecutive primes.

Original entry on oeis.org

233, 271, 311, 353, 443, 491, 631, 677, 883, 1367, 1423, 1483, 1543, 1607, 1787, 1901, 1951, 2011, 2141, 2203, 2383, 3253, 3469, 3541, 3617, 3691, 3967, 4159, 4229, 4297, 4943, 5009, 5483, 5657, 5741, 5903, 5981, 6553, 6871, 6991, 7057, 7121, 7187, 7873
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2007

Keywords

Comments

Primes in A127338.
A prime number n is in the sequence if for some k it is the absolute value of coefficient of x^10 of the polynomial Prod_{j=0,10}(x-prime(k+j)); the roots of this polynomial are prime(k), ..., prime(k+10).

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[Sum[Prime[x + n], {n, 0, 10}]], AppendTo[a, Sum[Prime[x + n], {n, 0, 10}]]], {x, 1, 500}]; a
    Select[Total/@Partition[Prime[Range[200]],11,1],PrimeQ] (* Harvey P. Dale, Jul 16 2012 *)
  • PARI
    {m=125;k=11;for(n=0,m-1,a=sum(j=1,k,prime(n+j));if(isprime(a),print1(a,",")))} \\ Klaus Brockhaus, Jan 13 2007
    
  • PARI
    {m=126;k=11;for(n=1,m,a=abs(polcoeff(prod(j=0,k-1,(x-prime(n+j))),k-1));if(isprime(a),print1(a,",")))} \\ Klaus Brockhaus, Jan 13 2007

Extensions

Edited by Klaus Brockhaus, Jan 13 2007