cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127346 Primes in A127345.

Original entry on oeis.org

31, 71, 167, 311, 1151, 3119, 4871, 5711, 6791, 14831, 24071, 33911, 60167, 79031, 101159, 106367, 115631, 158231, 235751, 259751, 366791, 402551, 455471, 565919, 635711, 644951, 1124831, 1347971, 1510799, 1547927, 1743419, 1851671, 2048471
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2007

Keywords

Comments

Primes of the form prime(k)*prime(k+1) + prime(k)*prime(k+2) + prime(k+1)*prime(k+2).
A prime number n is in the sequence if for some k it is the coefficient of x^1 of the polynomial Product_{j=0..2} (x-prime(k+j)); the roots of this polynomial are prime(k), ..., prime(k+2).

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[If[PrimeQ[Prime[x] Prime[x + 1] + Prime[x] Prime[x + 2] + Prime[x + 1] Prime[x + 2]], AppendTo[a, Prime[x] Prime[x + 1] + Prime[x] Prime[x + 2] + Prime[x + 1] Prime[x + 2]], AppendTo[b, Prime[x] Prime[x + 1] + Prime[x] Prime[x + 2] + Prime[x + 1] Prime[x + 2]]], {x, 1, 100}]; Print[a] (* Artur Jasinski, Jan 11 2007 *)
    s[li_] := li[[1]]*(li[[2]]+li[[3]])+li[[2]]*li[[3]]; Select[(s[#]&/@Partition[Prime[Range[100]], 3, 1]), PrimeQ] (* Zak Seidov, Jan 13 2012 *)
  • PARI
    {m=143;k=2;for(n=1,m,a=sum(i=n,n+k-1,sum(j=i+1,n+k,prime(i)*prime(j)));if(isprime(a),print1(a,",")))} \\ Klaus Brockhaus, Jan 21 2007
    
  • PARI
    {m=143;k=2;for(n=1,m,a=polcoeff(prod(j=0,k,(x-prime(n+j))),1);if(isprime(a),print1(a,",")))} \\ Klaus Brockhaus, Jan 21 2007
    
  • PARI
    p=2; q=3; forprime(r=5, 1e3, if(isprime(t=p*q+p*r+q*r), print1(t", ")); p=q; q=r) \\ Charles R Greathouse IV, Jan 13 2012

Formula

a(n) = A127345(A204231(n)). - Zak Seidov, Jan 13 2012

Extensions

Edited and extended by Klaus Brockhaus, Jan 21 2007