cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127347 Composites in A127345.

Original entry on oeis.org

551, 791, 1655, 2279, 3935, 8391, 9959, 11639, 13175, 16559, 18383, 20975, 27419, 30191, 32231, 36071, 40511, 45791, 51983, 55199, 64199, 69599, 73911, 84311, 89751, 94679, 112511, 122759, 133419, 145571, 153671, 163775, 169439, 178079
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2007

Keywords

Comments

Composites of the form prime(k)*prime(k+1)+prime(k)*prime(k+2)+prime(k+1)*prime(k+2).
A composite number n is in the sequence if for some k it is the coefficient of x^1 of the polynomial Prod_{j=0..2}(x-prime(k+j)); the roots of this polynomial are prime(k), ..., prime(k+2).

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[If[PrimeQ[Prime[x] Prime[x + 1] + Prime[x] Prime[x + 2] + Prime[x + 1] Prime[x + 2]], AppendTo[a, Prime[x] Prime[x + 1] + Prime[x] Prime[x + 2] + Prime[x + 1] Prime[x + 2]], AppendTo[b, Prime[x] Prime[x + 1] + Prime[x] Prime[x + 2] + Prime[x + 1] Prime[x + 2]]], {x, 1, 100}]; Print[a]; Print[b]
    Select[Total[Times@@@Subsets[#,{2}]]&/@Partition[Prime[ Range[80]], 3,1],!PrimeQ[#]&] (* Harvey P. Dale, May 27 2012 *)
  • PARI
    {m=52;k=2;for(n=1,m,a=sum(i=n,n+k-1,sum(j=i+1,n+k,prime(i)*prime(j)));if(!isprime(a),print1(a,",")))}  \\ Klaus Brockhaus, Jan 21 2007
    
  • PARI
    {m=52;k=2;for(n=1,m,a=polcoeff(prod(j=0,k,(x-prime(n+j))),1);if(!isprime(a),print1(a,",")))} \\ Klaus Brockhaus, Jan 21 2007

Extensions

Edited and extended by Klaus Brockhaus, Jan 21 2007