cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127358 a(n) = Sum_{k=0..n} binomial(n, floor(k/2))*2^(n-k).

Original entry on oeis.org

1, 3, 8, 21, 54, 138, 350, 885, 2230, 5610, 14088, 35346, 88596, 221952, 555738, 1391061, 3480870, 8708610, 21783680, 54483510, 136254964, 340729788, 852000828, 2130354786, 5326563004, 13317759588, 33296999120, 83247698100, 208129274400, 520343244300
Offset: 0

Views

Author

Paul Barry, Jan 11 2007

Keywords

Comments

Hankel transform is (-1)^n. In general, given r >= 0, the sequence given by Sum_{k=0..n} binomial(n, floor(k/2))*r^(n-k) has Hankel transform (1-r)^n. The sequence is the image of the sequence with g.f. (1+x)/(1-2*x) under the Chebyshev mapping g(x) -> (1/sqrt(1-4*x^2))*g(x*c(x^2)), where c(x) is the g.f. of the Catalan numbers A000108.

Examples

			a(3) = 21 = (12 + 6 + 2 + 1), where the top row of M^3 = (12, 6, 2, 1).
		

Crossrefs

Cf. A107430. - Philippe Deléham, Sep 16 2009

Programs

  • Mathematica
    Table[Sum[Binomial[n,Floor[k/2]]2^(n-k),{k,0,n}],{n,0,30}] (* Harvey P. Dale, Jun 03 2012 *)
    CoefficientList[Series[(1 + 2*x - Sqrt[1 - 4*x^2])/(2*Sqrt[1 - 4*x^2]*(x - 1 + Sqrt[1 - 4*x^2])), {x, 0, 50}], x] (* G. C. Greubel, May 22 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec((1 + 2*x - sqrt(1 - 4*x^2))/(2*sqrt(1 - 4*x^2)*(x - 1 + sqrt(1 - 4*x^2)))) \\ G. C. Greubel, May 22 2017

Formula

G.f.: (1/sqrt(1 - 4x^2))(1 + x*c(x^2))/(1 - 2*x*c(x^2)).
a(n) = 2*a(n-1) + A054341(n-1). a(n) = Sum_{k=0..n} A126075(n,k). - Philippe Deléham, Mar 03 2007
a(n) = Sum_{k=0..n} A061554(n,k)*2^k. - Philippe Deléham, Dec 04 2009
From Gary W. Adamson, Sep 07 2011: (Start)
a(n) is the sum of top row terms of M^n, M is an infinite square production matrix as follows:
2, 1, 0, 0, 0, ...
1, 0, 1, 0, 0, ...
0, 1, 0, 1, 0, ...
0, 0, 1, 0, 1, ...
0, 0, 0, 1, 0, ...
... (End)
D-finite with recurrence 2*n*a(n) + (-5*n-4)*a(n-1) + 2*(-4*n+13)*a(n-2) + 20*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 30 2012
a(n) ~ 3 * 5^n / 2^(n+1). - Vaclav Kotesovec, Feb 13 2014