A126932 Binomial transform of A127358.
1, 4, 15, 55, 199, 714, 2547, 9048, 32043, 113212, 399265, 1406079, 4946137, 17383162, 61048359, 214270215, 751691811, 2636004228, 9240836733, 32386215981, 113478349989, 397544907486, 1392493797765, 4876916883090, 17078574481941, 59802541979964
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Isaac DeJager, Madeleine Naquin, Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (Sqrt(1-2*x-3*x^2) + 3*(1-3*x))/(2*(2-13*x+21*x^2)) )); // G. C. Greubel, Jan 29 2020 -
Maple
seq(coeff(series( (sqrt(1-2*x-3*x^2) + 3*(1-3*x))/(2*(2-13*x+21*x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 29 2020
-
Mathematica
CoefficientList[Series[(Sqrt[-3*x^2-2*x+1]-3*(3*x-1))/(2*(21*x^2-13*x+2)), {x, 0, 30}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
-
PARI
my(x='x+O('x^30)); Vec( (sqrt(1-2*x-3*x^2) + 3*(1-3*x))/(2*(2-13*x+21*x^2)) ) \\ G. C. Greubel, Jan 29 2020
-
Sage
def A126932_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (sqrt(1-2*x-3*x^2) + 3*(1-3*x))/(2*(2-13*x+21*x^2)) ).list() A126932_list(30) # G. C. Greubel, Jan 29 2020
Formula
a(n+1) = 3*a(n) + A059738(n) with a(0)=1.
G.f: (sqrt(1-2*x-3*x^2) + 3*(1-3*x))/(2*(2-13*x+21*x^2)). - Paul Barry, Nov 06 2008
Conjecture: +2*n*a(n) -11*n*a(n-1) +4*(2*n+3)*a(n-2) +21*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ 3 * 7^n / 2^(n+1). - Vaclav Kotesovec, Feb 12 2014
Extensions
Corrected and extended by Vincenzo Librandi, Feb 13 2014
Comments