A127473 a(n) = phi(n)^2.
1, 1, 4, 4, 16, 4, 36, 16, 36, 16, 100, 16, 144, 36, 64, 64, 256, 36, 324, 64, 144, 100, 484, 64, 400, 144, 324, 144, 784, 64, 900, 256, 400, 256, 576, 144, 1296, 324, 576, 256, 1600, 144, 1764, 400, 576, 484, 2116, 256, 1764, 400, 1024, 576, 2704, 324, 1600
Offset: 1
Examples
a(5) = 16 since phi(5) = 4.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence).
Crossrefs
Programs
-
Magma
[(EulerPhi(n))^2: n in [1..180]]; // Vincenzo Librandi, Apr 04 2011
-
Maple
A127473 := proc(n) numtheory[phi](n)^2 ; end proc: seq(A127473(n),n=1..40) ; # R. J. Mathar, Apr 04 2011
-
Mathematica
Table[EulerPhi[n]^2,{n,100}] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
-
PARI
a(n) = eulerphi(n)^2; \\ Michel Marcus, Oct 16 2018
Formula
a(n) = A000010(n)^2.
Multiplicative with a(p^e) = (p-1)^2*p^(2e-2), e >= 1. Dirichlet g.f. zeta(s-2)*Product_{primes p} (1 - 2/p^(s-1) + 1/p^s). - R. J. Mathar, Apr 04 2011
Sum_{k>=1} 1/a(k) = A109695. - Vaclav Kotesovec, Sep 20 2020
Sum_{k>=1} (-1)^k/a(k) = (1/7) * A109695. - Amiram Eldar, Nov 11 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime}(1 - (2*p-1)/p^3) = A065464 / 3 = 0.142749... . - Amiram Eldar, Oct 25 2022
a(n) = Sum_{d|n} mu(n/d)*phi(n*d). - Ridouane Oudra, Jul 23 2025
Comments