A127492
Indices m of primes such that Sum_{k=0..2, k
2, 10, 17, 49, 71, 72, 75, 145, 161, 167, 170, 184, 244, 250, 257, 266, 267, 282, 286, 301, 307, 325, 343, 391, 405, 429, 450, 537, 556, 561, 584, 685, 710, 743, 790, 835, 861, 904, 928, 953
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 2..1000
Crossrefs
Cf. A001043, A034961, A034963, A034964, A127333, A127334, A127335, A127336, A127337, A127338, A127339, A127340, A127341, A127342, A127343, A127345, A127346, A127347, A127348, A127349, A127351, A037171, A034962, A034965, A082246, A082251, A070934, A006094, A046301, A046302, A046303, A046324, A046325, A046326, A046327, A127489, A127490, A127491.
Programs
-
Maple
isA127492 := proc(k) local x,j ; (x-ithprime(k))* mul( x-ithprime(k+j),j=1..2) +(x-ithprime(k))* mul( x-ithprime(k+j),j=2..3) +(x-ithprime(k))* mul( x-ithprime(k+j),j=3..4) +(x-ithprime(k+1))* mul( x-ithprime(k+j),j=2..3) +(x-ithprime(k+1))* mul( x-ithprime(k+j),j=3..4) +(x-ithprime(k+2))* mul( x-ithprime(k+j),j=3..4) ; p := abs(coeff(expand(%/2),x,0)) ; if type(p,'integer') then isprime(p) ; else false ; end if ; end proc: for k from 1 to 900 do if isA127492(k) then printf("%a,",k) ; end if ; end do: # R. J. Mathar, Apr 23 2023
-
Mathematica
a = {}; Do[If[PrimeQ[(Prime[x] Prime[x + 1]Prime[x + 2] + Prime[x] Prime[x + 2]Prime[x + 3] + Prime[x] Prime[x + 3] Prime[x + 4] + Prime[x + 1] Prime[x + 2]Prime[x + 3] + Prime[x + 1] Prime[x + 3]Prime[x + 4] + Prime[x + 2] Prime[x + 3] Prime[x + 4])/2], AppendTo[a, x]], {x, 1, 1000}]; a prQ[{a_,b_,c_,d_,e_}]:=PrimeQ[(a b c+a c d+a d e+b c d+b d e+c d e)/2]; PrimePi/@Select[ Partition[ Prime[Range[1000]],5,1],prQ][[;;,1]] (* Harvey P. Dale, Apr 21 2023 *)
Extensions
Definition simplified by R. J. Mathar, Apr 23 2023
Edited by Jon E. Schoenfield, Jul 23 2023
Comments