cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127525 Number of ordered rooted trees where each subtree from given node has the same number of nodes.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 12, 13, 24, 33, 60, 61, 142, 143, 289, 447, 699, 700, 1558, 1559, 3518, 5375, 8977, 8978, 17179, 20305, 40471, 54808, 98182, 98183, 242068, 242069, 477002, 695051, 1183654, 1510612, 2629806, 2629807, 5057173, 7928654, 12366025, 12366026
Offset: 1

Views

Author

Keywords

Examples

			The tree shown below left counts, because the left subtree has 3 nodes and so does the right subtree and a similar condition holds for the subtrees. The tree shown on the right is not counted, because the left subtree has 3 nodes, while the right subtree has 4.
O..........O...O...O
|..........|....\./.
O...O...O..O.....O..
.\...\./....\....|..
.O...O......O...O..
..\./........\./...
...O..........O....
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n, add(
          a((n-1)/d)^d, d=numtheory[divisors](n-1)))
        end:
    seq(a(n), n=1..45);  # Alois P. Heinz, Sep 08 2018
  • Mathematica
    a[1] = 1;
    a[n_] := a[n] = Sum[a[(n-1)/d]^d, {d, Divisors[n-1]}];
    Array[a, 45] (* Jean-François Alcover, Oct 28 2020 *)

Formula

a(1) = 1; a(n+1) = Sum_{d|n} a(n/d)^d.
L.g.f.: -log(Product_{n>=1} (1 - a(n)*x^n)^(1/n)) = Sum_{n>=1} a(n+1)*x^n/n. - Ilya Gutkovskiy, Apr 29 2019