cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A127524 Number of unordered rooted trees where each subtree from given node has the same number of nodes.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 11, 12, 20, 25, 42, 43, 81, 82, 150, 192, 287, 288, 563, 564, 982, 1277, 2182, 2183, 3658, 3785, 7108, 8659, 13101, 13102, 27827, 27828, 47768, 61025, 102355, 105689, 170882, 170883, 329651, 421547, 606283, 606284, 1193038, 1193039, 2158117
Offset: 1

Views

Author

Keywords

Examples

			The tree shown below left counts, because the subtree shown on the left has 3 nodes and so does the one on the right and a similar condition holds for the subtrees. The tree shown on the right is not counted, because the subtree shown on the left has 3 nodes, while the one on the right has 4.
O..........O...O...O
|..........|....\./.
O...O...O..O.....O..
.\...\./....\....|..
.O...O......O...O..
..\./........\./...
...O..........O....
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n<2, n,
          add(binomial(a((n-1)/d)+d-1, d), d=divisors(n-1)))
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, May 16 2013
  • Mathematica
    a[1] = 1; a[n_] := a[n] = DivisorSum[n-1, Binomial[a[(n-1)/#]+#-1, #]&]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 25 2017 *)

Formula

a(1) = 1; a(n+1) = Sum_{d|n} C(a(n/d) + d-1, d).

A307781 a(1) = 1; a(n+1) = -Sum_{d|n} a(d)^(n/d).

Original entry on oeis.org

1, -1, 0, -1, -1, 0, 0, -1, -2, 1, -2, 1, -2, 1, -1, 1, -5, 4, -8, 7, -10, 9, -13, 12, -15, 15, -19, 26, -28, 27, -30, 29, -34, 41, -66, 66, -100, 99, -163, 170, -223, 222, -323, 322, -420, 453, -622, 621, -771, 770, -997, 1121, -1363, 1362, -1851, 1883, -2562, 3073, -3857, 3856
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 28 2019

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; local d;
      -add(procname(d)^((n-1)/d), d = numtheory:-divisors(n-1))
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Apr 29 2019
  • Mathematica
    a[n_] := a[n] = -Sum[a[d]^((n - 1)/d), {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 60}]
  • PARI
    lista(nn) = {my(va = vector(nn)); va[1] = 1; for (n=2, nn, va[n] = -sumdiv(n-1, d, va[d]^((n-1)/d));); va;} \\ Michel Marcus, Apr 30 2019

Formula

L.g.f.: log(Product_{n>=1} (1 - a(n)*x^n)^(1/n)) = Sum_{n>=1} a(n+1)*x^n/n.

A309633 G.f.: x * Sum_{k>=1} x^k / (1 - a(k)*x^k).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 5, 6, 4, 1, 7, 1, 13, 11, 6, 1, 7, 17, 7, 11, 31, 1, 45, 1, 10, 18, 6, 146, 34, 1, 9, 27, 141, 1, 261, 1, 78, 364, 8, 1, 44, 730, 537, 18, 145, 1, 255, 1281, 2203, 51, 33, 1, 2213, 1, 47, 7461, 221, 4722, 1159, 1, 85, 38, 27948, 1, 2342, 1, 36, 17060, 347, 63146, 3427, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 10 2019

Keywords

Crossrefs

Cf. A028815 (positions of 1's), A087909, A127525, A309634.

Programs

  • Mathematica
    a[n_] := a[n] = SeriesCoefficient[x Sum[x^k/(1 - a[k] x^k), {k, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 80}]
    a[n_] := a[n] = Sum[a[d]^((n - 1)/d - 1) , {d, Divisors[n - 1]}]; a[1] = 0; a[2] = 1; Table[a[n], {n, 1, 80}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, #v-1, v[n+1]=sumdiv(n, d, v[d]^(n/d-1))); v} \\ Andrew Howroyd, Aug 10 2019

Formula

a(1) = 0; a(n+1) = Sum_{d|n} a(d)^(n/d-1).

A307780 a(1) = 1; a(n+1) = Sum_{d|n, n/d odd} a(d)^(n/d).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 5, 7, 8, 9, 17, 18, 19, 29, 29, 30, 58, 59, 91, 157, 158, 159, 284, 317, 318, 445, 573, 574, 1161, 1162, 1162, 1676, 1677, 2830, 4071, 4072, 4073, 8988, 12113, 12114, 20134, 20135, 22183, 32681, 32682, 32683, 57072, 73457, 90265, 114656, 122848, 122849, 169533
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 28 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Sum[Boole[OddQ[(n - 1)/d]] a[d]^((n - 1)/d), {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 55}]

Formula

L.g.f.: log(Product_{n>=1} ((1 + a(n)*x^n)/(1 - a(n)*x^n))^(1/(2*n))) = Sum_{n>=1} a(n+1)*x^n/n.
Showing 1-4 of 4 results.