cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127546 a(n) = F(n)^2 + F(n+1)^2 + F(n+2)^2, where F(n) denotes the n-th Fibonacci number.

Original entry on oeis.org

2, 6, 14, 38, 98, 258, 674, 1766, 4622, 12102, 31682, 82946, 217154, 568518, 1488398, 3896678, 10201634, 26708226, 69923042, 183060902, 479259662, 1254718086, 3284894594, 8599965698, 22515002498, 58945041798, 154320122894, 404015326886, 1057725857762
Offset: 0

Views

Author

Simone Severini, Apr 01 2007

Keywords

Comments

The following conjecture, if not already well-known, is probably easy to prove: a(n) = 3a(n-1)-a(n-2)-2(-1)^n, for n=4,5,6,... . (This has been verified up to n=1000.)

Examples

			a(2)=14 because F(2)^2+F(3)^2+F(4)^2=1+4+9=14.
		

Crossrefs

Cf. A061646.

Programs

  • Maple
    with(combinat): a:=n->fibonacci(n)^2+fibonacci(n+1)^2+fibonacci(n+2)^2: seq(a(n),n=0..32); # Emeric Deutsch, Apr 04 2007
    A000045 := proc(n) combinat[fibonacci](n) ; end: A127546 := proc(n) add( A000045(i+1)^2,i=n..n+2) ; end: for n from 1 to 33 do printf("%d, ",A127546(n)) ; od ; # R. J. Mathar, Apr 03 2007
    with(combinat): seq(4*fibonacci(n+1)^2-2*(-1)^n, n=0..29)
  • Mathematica
    Total/@(Partition[Fibonacci[Range[0,30]],3,1]^2) (* Harvey P. Dale, Oct 20 2011 *)
  • PARI
    for(n=0,10,print1(4*fibonacci(n+1)^2-2*(-1)^n,", "))

Formula

a(n) = 2*A061646(n+1) = 4*F(n+1)^2-2*(-1)^(n+1). - Emeric Deutsch, Apr 04 2007; Gary Detlefs, Nov 27 2010
a(n) = 2*(F(n)^2+F(n+1)^2+F(n)*F(n+1)). - Emeric Deutsch, Apr 04 2007
G.f.: 2(1+x-x^2)/((1+x)(1-3x+x^2)). - R. J. Mathar, Nov 25 2008

Extensions

Edited and extended by R. J. Mathar, Emeric Deutsch and John W. Layman, Apr 09 2007