A127546 a(n) = F(n)^2 + F(n+1)^2 + F(n+2)^2, where F(n) denotes the n-th Fibonacci number.
2, 6, 14, 38, 98, 258, 674, 1766, 4622, 12102, 31682, 82946, 217154, 568518, 1488398, 3896678, 10201634, 26708226, 69923042, 183060902, 479259662, 1254718086, 3284894594, 8599965698, 22515002498, 58945041798, 154320122894, 404015326886, 1057725857762
Offset: 0
Keywords
Examples
a(2)=14 because F(2)^2+F(3)^2+F(4)^2=1+4+9=14.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Shalosh B. Ekhad and Doron Zeilberger, Automatic Counting of Tilings of Skinny Plane Regions, arXiv preprint arXiv:1206.4864 [math.CO], 2012.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Crossrefs
Cf. A061646.
Programs
-
Maple
with(combinat): a:=n->fibonacci(n)^2+fibonacci(n+1)^2+fibonacci(n+2)^2: seq(a(n),n=0..32); # Emeric Deutsch, Apr 04 2007 A000045 := proc(n) combinat[fibonacci](n) ; end: A127546 := proc(n) add( A000045(i+1)^2,i=n..n+2) ; end: for n from 1 to 33 do printf("%d, ",A127546(n)) ; od ; # R. J. Mathar, Apr 03 2007 with(combinat): seq(4*fibonacci(n+1)^2-2*(-1)^n, n=0..29)
-
Mathematica
Total/@(Partition[Fibonacci[Range[0,30]],3,1]^2) (* Harvey P. Dale, Oct 20 2011 *)
-
PARI
for(n=0,10,print1(4*fibonacci(n+1)^2-2*(-1)^n,", "))
Formula
a(n) = 2*A061646(n+1) = 4*F(n+1)^2-2*(-1)^(n+1). - Emeric Deutsch, Apr 04 2007; Gary Detlefs, Nov 27 2010
a(n) = 2*(F(n)^2+F(n+1)^2+F(n)*F(n+1)). - Emeric Deutsch, Apr 04 2007
G.f.: 2(1+x-x^2)/((1+x)(1-3x+x^2)). - R. J. Mathar, Nov 25 2008
Comments