A127591
Numbers k such that 64k+21 is prime.
Original entry on oeis.org
2, 4, 10, 13, 17, 19, 20, 22, 23, 25, 29, 32, 37, 44, 50, 53, 55, 58, 59, 62, 68, 79, 83, 88, 89, 94, 95, 97, 100, 107, 109, 113, 118, 122, 134, 142, 143, 152, 155, 157, 158, 163, 167, 169, 173, 193, 194, 199, 200
Offset: 1
Cf.
A035050,
A007522,
A127575,
A127576,
A127577,
A127578,
A127580,
A127581,
A087522,
A127586,
A127587,
A127589,
A127590,
A127592,
A127593,
A127594.
-
a = {}; Do[If[PrimeQ[21 + 64 n], AppendTo[a, n]], {n, 0, 200}]; a
Select[Range[200],PrimeQ[64#+21]&] (* Harvey P. Dale, Jan 15 2016 *)
A127592
Primes of the form 64k+21.
Original entry on oeis.org
149, 277, 661, 853, 1109, 1237, 1301, 1429, 1493, 1621, 1877, 2069, 2389, 2837, 3221, 3413, 3541, 3733, 3797, 3989, 4373, 5077, 5333, 5653, 5717, 6037, 6101, 6229, 6421, 6869, 6997, 7253, 7573, 7829, 8597, 9109, 9173, 9749, 9941, 10069, 10133, 10453
Offset: 1
Cf.
A000040.
A035050,
A007522,
A127575,
A127576,
A127577,
A127578,
A127580,
A127581,
A087522,
A127586,
A127587,
A127589,
A127590,
A127591,
A127593,
A127594.
-
[p: p in PrimesUpTo(11000) | p mod 64 eq 21 ]; // Vincenzo Librandi, Sep 06 2012
-
a = {}; Do[If[PrimeQ[21 + 64 n], AppendTo[a, 21 + 64 n]], {n, 0, 200}]; a
Select[Prime[Range[1700]], MemberQ[{21}, Mod[#, 64]] &] (* Vincenzo Librandi, Sep 06 2012 *)
A127593
Primes of the form 256 k + 85.
Original entry on oeis.org
853, 1109, 1621, 1877, 2389, 3413, 5717, 6229, 6997, 7253, 10069, 10837, 11093, 12373, 13397, 16981, 17749, 18517, 18773, 19541, 21589, 22613, 23893, 24917, 27733, 29269, 30293, 31573, 32341, 37717, 39509, 40277, 41813, 43093, 46933
Offset: 1
Cf.
A035050,
A007522,
A127575,
A127576,
A127577,
A127578,
A127580,
A127581,
A087522,
A127586,
A127587,
A127589,
A127590,
A127591,
A127592,
A127594.
-
a = {}; Do[If[PrimeQ[85 + 256 n], AppendTo[a, 85 + 256 n]], {n, 0, 200}]; a
Select[256*Range[200]+85,PrimeQ] (* Harvey P. Dale, Oct 09 2020 *)
A127594
Numbers k such that 256 k + 85 is prime.
Original entry on oeis.org
3, 4, 6, 7, 9, 13, 22, 24, 27, 28, 39, 42, 43, 48, 52, 66, 69, 72, 73, 76, 84, 88, 93, 97, 108, 114, 118, 123, 126, 147, 154, 157, 163, 168, 183, 184, 186, 196, 198
Offset: 1
Cf.
A035050,
A007522,
A127575,
A127576,
A127577,
A127578,
A127580,
A127581,
A087522,
A127586,
A127587,
A127589,
A127590,
A127591,
A127592,
A127593.
-
a = {}; Do[If[PrimeQ[85 + 256 n], AppendTo[a, n]], {n, 0, 200}]; a
A127597
Least number k such that k 4^n + (4^n-1)/3 is prime.
Original entry on oeis.org
2, 1, 0, 2, 3, 2, 4, 4, 3, 10, 3, 3, 2, 7, 2, 25, 6, 17, 4, 13, 3, 20, 36, 20, 11, 27, 66, 23, 39, 24, 19, 13, 3, 10, 6, 122, 71, 58, 24, 13, 3, 2, 41, 10, 6, 32, 58, 17, 4, 79, 26, 55, 36, 48, 31, 28, 9, 2, 76, 24, 32, 28, 63, 20, 37, 9, 2, 7, 39, 10, 91, 47
Offset: 0
Cf.
A035050,
A007522,
A127575,
A127576,
A127577,
A127578,
A127580,
A127581,
A087522,
A127586,
A127587,
A127589,
A127590,
A127591,
A127592,
A127593,
A127594,
A127598.
-
a = {}; Do[k = 0; While[ !PrimeQ[k 4^n + (4^n - 1)/3], k++ ]; AppendTo[a, k], {n, 0, 50}]; a (*Artur Jasinski*)
lnk[n_]:=Module[{k=0,n4=4^n},While[!PrimeQ[k*n4+(n4-1)/3],k++];k]; Array[ lnk,60,0] (* Harvey P. Dale, May 28 2018 *)
-
from sympy import isprime
def a(n):
k, fourn = 0, 4**n
while not isprime(k*fourn + (fourn-1)//3): k += 1
return k
print([a(n) for n in range(72)]) # Michael S. Branicky, May 18 2022
A127598
Least primes of the form k 4^n + (4^n-1)/3.
Original entry on oeis.org
2, 5, 5, 149, 853, 2389, 17749, 70997, 218453, 2708821, 3495253, 13981013, 39146837, 492131669, 626349397, 27201459541, 27201459541, 297784399189, 297784399189, 3665038759253, 3665038759253, 89426945725781
Offset: 1
Cf.
A035050,
A007522,
A127575,
A127576,
A127577,
A127578,
A127580,
A127581,
A087522,
A127586,
A127587,
A127589,
A127590,
A127591,
A127592,
A127593,
A127594,
A127597.
-
a = {}; Do[k = 0; While[ !PrimeQ[k 4^n + (4^n - 1)/3], k++ ]; AppendTo[a, k 4^n + (4^n - 1)/3], {n, 0, 50}]; a (*Artur Jasinski*)
A153327
Numbers n such that 16*n+5 is not prime.
Original entry on oeis.org
1, 4, 5, 7, 8, 10, 13, 15, 16, 19, 20, 21, 22, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 43, 45, 46, 49, 50, 52, 54, 55, 56, 57, 58, 59, 60, 61, 64, 65, 67, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100
Offset: 1
Distribution of the terms in the following triangular array:
*;
*,*;
1,*,*;
*,*,*,*;
*,*,*,*,*,;
*,*,*,7,*,*;
*,*,*,*,10,*,*;
*,5,*,*,*,*,*,*;
*,*,8,*,*,*,*,*,*;
*,*,*,*,*,*,*,22,*,*;
4,*,*,*,*,*,*,*,27*,*;
*,*,*,*,*,20,*,*,*,*,*,*;
*,*,*,*,*,*,25,*,*,*,*,*,*; etc.
where * marks the non-integer values of (2*h*k + k + h - 2)/8 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013
Showing 1-7 of 7 results.
Comments