A334186 Let m = d*q + r be the Euclidean division of m by d. The terms m of this sequence satisfy that r, q, d are consecutive positive integer terms in a geometric progression with a noninteger common ratio > 1.
58, 201, 224, 254, 384, 498, 516, 690, 786, 880, 1008, 1038, 1105, 1370, 1388, 1462, 1518, 1545, 1740, 1755, 1968, 2032, 2094, 2262, 2585, 2666, 2674, 2752, 2932, 3009, 3108, 3402, 3488, 3633, 3670, 4002, 4016, 4134, 4370, 4398, 4410, 4548, 4845, 5152, 5340, 5440
Offset: 1
Keywords
A335064 Let m = d*q + r be the Euclidean division of m by d. The terms m of this sequence satisfy that q, r, d are consecutive positive integer terms in a geometric progression with a noninteger common ratio > 1.
42, 110, 156, 210, 240, 342, 420, 462, 506, 600, 702, 812, 930, 1122, 1190, 1260, 1332, 1482, 1560, 1640, 1806, 1980, 2070, 2162, 2352, 2550, 2652, 2756, 2970, 3080, 3192, 3306, 3422, 3660, 3906, 4032, 4290, 4422, 4692, 4830, 4970, 5256, 5550, 5700, 5852, 6006, 6162
Offset: 1
Keywords
Comments
Inspired by the problem 141 of Project Euler (see the link).
The terms of this sequence are oblong numbers m = k*(k+1) with k in A024619.
When q < r < d are consecutive terms of a geometric progression of constant b = p/s noninteger, with b>1, s>=2, p>s, it is necessary that q is a multiple of s^2, so q = q' * s^2 with q' >= 1; the Euclidean division of a term m by q becomes
p*s*q' * (1+p*s*q') = (p^2*q') * (s^2*q') + p*s*q' with k = p*s*q',
so (q, r, d) = (s^2*q', p*s*q', p^2*q') is solution. (see examples).
But, as these terms are oblong, there exists also another division where the constant ratio is the integer psq' and (q,r,d) = (1, p*s*q', (p*s*q')^2) are in geometric progression.
Examples
Examples for 42, 110 and 156 with consecutive ratios 3/2, 5/2, 4/3: 42 | 9 110 | 25 156 | 16 ----- ----- ----- 6 | 4 , 10 | 4 , 12 | 9 , then with consecutive ratios 2, 10 and 12: 42 | 12 110 | 100 156 | 144 ----- ----- ------ 6 | 3 , 10 | 1 , 12 | 1.
Links
Programs
-
Mathematica
Table[n*(n + 1), {n, Select[Range[80], PrimeNu[#] > 1 &]}] (* Amiram Eldar, May 23 2020 *)
-
PARI
apply(x->x*(x+1), select(x->!isprimepower(x), [2..80])) \\ Michel Marcus, May 23 2020
Formula
A335065 Let m = d*q + r be the Euclidean division of m by d. The terms m of this sequence satisfy that d, q, r are consecutive positive integer terms in a geometric progression but not necessarily in that order.
6, 9, 12, 20, 28, 30, 34, 42, 56, 58, 65, 72, 75, 90, 110, 126, 132, 156, 182, 201, 205, 210, 217, 224, 240, 246, 254, 258, 272, 294, 306, 342, 344, 380, 384, 399, 420, 436, 462, 498, 502, 506, 513, 516, 520, 552, 579, 600, 650, 657, 680, 690, 702, 730, 756, 786
Offset: 1
Keywords
Comments
Inspired by the problem 141 of Project Euler (see link).
There exist 3 possibilities to get such terms m that satisfy that d, q, r are consecutive positive integer terms in a geometric progression but not necessarily in that order:
-> the geometric progression is r < q < d (A127629).
-> the geometric progression is r < d < q (same terms of A127629).
-> the geometric progression is q < r < d (A002378 \ {0,2} = oblong numbers >= 6).
Some numbers have a geometric progression solution in the 3 cases (132, 1332, 6162, ...) [see examples].
Examples
Examples with r < q < d, r < d < q, q < r <d: 34 | 8 75 | 6 42 | 12 ---- ----- ----- 2 | 4 , 3 | 12 , 6 | 3 The 3 possible divisions by 132: 132 | 16 132 | 8 132 | 121 ----- ------ ------ 4 | 8 , 4 | 16 , 11 | 1.
Links
Programs
-
Mathematica
mx = 800; Union@ Reap[ Do[y = x+1; While[(z = y^2/x) < mx, If[ IntegerQ@ z, If[(m = z y + x) <= mx, Sow@ m]; If[(m = z x + y) <= mx, Sow@ m]]; y++], {x, mx}]][[2, 1]] (* Giovanni Resta, May 24 2020 *)
-
PARI
isok(n) = {my(r, d); for (q=2, n-1, if (r=(n % q), d = n\q; if ((r*d == q^2) || (r*q == d^2) || (q*d == r^2), return (1));););} \\ Michel Marcus, May 25 2020
A335272 For m to be a term there must exist three Euclidean divisions of m by d, d', and d", m = d*q + r = d'*q' + r' = d"*q" + r", such that (r, q, d), (r', d', q'), and (q", r", d") are three geometric progressions.
110, 132, 1332, 6162, 10712, 12210, 35156, 60762, 67340, 152490, 296480, 352242, 354620, 357006, 648830, 771762, 932190, 1197930, 2057790, 2803950, 3241800, 3310580, 4458432, 6454140, 7865220, 9613100, 10814232, 13976382, 16382256, 19267710, 53824232, 55138050
Offset: 1
Keywords
Comments
Inspired by Project Euler, Problem 141 (see link).
The terms are necessary oblong numbers >= 6.
Examples
For 110: 110 | 18 110 | 6 110 | 100 ----- ------ --------- 2 | 6 , 2 | 18 , 10 | 1 For 132, see A335065. For 1332: 1332 | 121 1332 | 11 1332 | 1296 ------ ------- ------- 1 | 11 , 1 | 121 , 36 | 1 .
Links
- Giovanni Resta, Table of n, a(n) for n = 1..200
- Project Euler, Problem 141: Investigating progressive numbers, n, which are also square
Programs
-
Mathematica
Select[(#^2 + #) & /@ Range[2000], (n = #; AnyTrue[ Range[1 + Sqrt@ n], #^2 == Mod[n, #] Floor[n/#] &]) &] (* Giovanni Resta, Jun 03 2020 *)
-
PARI
isob(n) = my(m=sqrtint(n)); m*(m+1)==n; \\ A002378 isgd(n) = {for(d=1, n, if((n\d)*(n%d)==d^2, return(1))); return(0)}; \\ A127629 isok(n) = isob(n) && isgd(n); \\ Michel Marcus, May 30 2020
Extensions
More terms from Michel Marcus, May 30 2020
a(18)-a(26) from Jinyuan Wang, May 30 2020
Terms a(27) and beyond from Giovanni Resta, Jun 03 2020
Comments
Examples
Links
Crossrefs
Programs
PARI
Extensions