A127647 Triangle read by rows: row n consists of n-1 zeros followed by Fibonacci(n).
1, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 34, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 89, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 233, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 377
Offset: 1
Examples
First few rows of the triangle: 1; 0, 1; 0, 0, 2; 0, 0, 0, 3; 0, 0, 0, 0, 5; 0, 0, 0, 0, 0, 8;
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
Magma
[k eq n select Fibonacci(n) else 0: k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 11 2019
-
Mathematica
Flatten[Table[{Table[0,{n-1}],Fibonacci[n]},{n,15}]] (* Harvey P. Dale, Jan 11 2016 *)
-
PARI
T(n,k)=if(k==n, fibonacci(n), 0); \\ G. C. Greubel, Jul 11 2019
-
Sage
def T(n, k): if (k==n): return fibonacci(n) else: return 0 [[T(n, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 11 2019
Formula
An infinite lower triangular matrix with the Fibonacci sequence in the main diagonal and the rest zeros.
G.f.: -x*y/(-1+x*y+x^2*y^2). - R. J. Mathar, Aug 11 2015
Comments