cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A128540 Triangle A127647 * A097806, read by rows.

Original entry on oeis.org

1, 1, 1, 0, 2, 2, 0, 0, 3, 3, 0, 0, 0, 5, 5, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 13, 13, 0, 0, 0, 0, 0, 0, 21, 21, 0, 0, 0, 0, 0, 0, 0, 34, 34, 0, 0, 0, 0, 0, 0, 0, 0, 55, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 89, 89, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 144
Offset: 1

Views

Author

Gary W. Adamson, Mar 10 2007

Keywords

Comments

Row sums = A094895 starting (1, 2, 4, 6, 10, 16, 26, ...). A128541 = A097806 * A127647.

Examples

			First few rows of the triangle:
  1;
  1, 1;
  0, 2, 2;
  0, 0, 3, 3;
  0, 0, 0, 5, 5;
  0, 0, 0, 0, 8, 8;
  ...
		

Crossrefs

Programs

  • Magma
    [k eq n select Fibonacci(n) else k eq n-1 select Fibonacci(n) else 0: k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 11 2019
    
  • Mathematica
    Table[If[k==n || k==n-1, Fibonacci[n], 0], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Jul 11 2019 *)
  • PARI
    T(n,k) = if(k==n || k==n-1, fibonacci(n), 0); \\ G. C. Greubel, Jul 11 2019
    
  • Sage
    def T(n, k):
        if (k==n): return fibonacci(n)
        elif (k==n-1): return fibonacci(n)
        else: return 0
    [[T(n, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 11 2019

Formula

A127646 * A097806 as infinite lower triangular matrices.

A131410 A127647 * A000012.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 5, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 13, 13, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 21, 34, 34, 34, 34, 34, 34, 34, 34, 34, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 144, 144, 144
Offset: 1

Views

Author

Gary W. Adamson, Jul 08 2007

Keywords

Comments

Row sums = A045925, n*Fib(n): (1, 2, 6, 12, 25, 48,...).

Examples

			First few rows of the triangle are:
1;
1, 1;
2, 2, 2;
3, 3, 3, 3;
5, 5, 5, 5, 5;
8, 8, 8, 8, 8, 8;
...
		

Crossrefs

Programs

  • Haskell
    a131410 n k = a131410_tabl !! (n-1) !! (n-1)
    a131410_row n = a131410_tabl !! (n-1)
    a131410_tabl = zipWith replicate [1..] $ tail a000045_list
    -- Reinhard Zumkeller, Oct 07 2012
  • Mathematica
    Table[Fibonacci[n], {n, 15}, {n}] // Flatten (* Vincenzo Librandi, Jan 28 2017 *)

Formula

A127647 * A000012 as infinite lower triangular matrices.
Partial sums of A127647 starting from the right, read by rows.
By rows, F(n) occurs n times.

A143061 Triangle read by rows, A000012 * A127647 * A000012.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 3, 5, 6, 7, 5, 8, 10, 11, 12, 8, 13, 16, 18, 19, 20, 13, 21, 26, 29, 31, 32, 33, 21, 34, 42, 47, 50, 52, 53, 54, 34, 55, 68, 76, 81, 84, 86, 87, 88, 55, 89, 110, 123, 131, 136, 139, 141, 142, 143, 89, 144, 178, 199, 212, 220, 225, 228, 230, 231
Offset: 1

Views

Author

Gary W. Adamson, Jul 20 2008

Keywords

Comments

Row sums = A014286 (1, 3, 9, 21, 46, 94, ...); left border = Fibonacci numbers.

Examples

			First few rows of the triangle are:
  1;
  1,  2;
  2,  3,  4;
  3,  5,  6,  7;
  5,  8, 10, 11, 12;
  8, 13, 16, 18, 19, 20;
  ...
		

Crossrefs

Programs

  • Maple
    seq(seq(combinat:-fibonacci(i+2)-combinat:-fibonacci(i+2-j),j=1..i),i=1..20); # Robert Israel, Nov 06 2016

Formula

From Robert Israel, Nov 06 2016: (Start)
T(n,k) = A000045(n+2) - A000045(n+2-k) for 1 <= k <= n.
G.f. as triangle: x*y*(1+x^2*y)/((1-x*y)*(1-x-x^2)*(1-x*y-x^2*y^2)). (End)

Extensions

Corrected by Dintle N Kagiso, Nov 06 2016

A128541 Triangle, A097806 * A127647, read by rows.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 0, 3, 5, 0, 0, 0, 0, 5, 8, 0, 0, 0, 0, 0, 8, 13, 0, 0, 0, 0, 0, 0, 13, 21, 0, 0, 0, 0, 0, 0, 0, 21, 34, 0, 0, 0, 0, 0, 0, 0, 0, 34, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 89, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 89, 144, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 233
Offset: 0

Views

Author

Gary W. Adamson, Mar 10 2007

Keywords

Comments

Row sums = A000045 starting (1, 2, 3, 5, 8, 13, ...). A128540 = A127647 * A097806.

Examples

			First few rows of the triangle:
  1;
  1, 1;
  0, 1, 2;
  0, 0, 2, 3;
  0, 0, 0, 3, 5;
  0, 0, 0, 0, 5, 8;
  ...
		

Crossrefs

Programs

  • Magma
    [k eq n select Fibonacci(n+1) else k eq n-1 select Fibonacci(n) else 0: k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 11 2019
    
  • Mathematica
    Table[If[k==n, Fibonacci[n+1], If[k==n-1, Fibonacci[n], 0]], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 11 2019 *)
  • PARI
    T(n,k) = if(k==n, fibonacci(n+1), if(k==n-1, fibonacci(n), 0)); \\ G. C. Greubel, Jul 11 2019
    
  • Sage
    def T(n, k):
        if (k==n): return fibonacci(n+1)
        elif (k==n-1): return fibonacci(n)
        else: return 0
    [[T(n, k) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Jul 11 2019

Formula

A097806 * A127647 as infinite lower triangular matrices.

Extensions

More terms added by G. C. Greubel, Jul 11 2019

A128619 Triangle T(n, k) = A127647(n,k) * A128174(n,k), read by rows.

Original entry on oeis.org

1, 0, 1, 2, 0, 2, 0, 3, 0, 3, 5, 0, 5, 0, 5, 0, 8, 0, 8, 0, 8, 13, 0, 13, 0, 13, 0, 13, 0, 21, 0, 21, 0, 21, 0, 21, 34, 0, 34, 0, 34, 0, 34, 0, 34, 0, 55, 0, 55, 0, 55, 0, 55, 0, 55
Offset: 1

Views

Author

Gary W. Adamson, Mar 14 2007

Keywords

Comments

This triangle is different from A128618, which is equal to A128174 * A127647.

Examples

			First few rows of the triangle are:
   1;
   0,  1;
   2,  0,  2;
   0,  3,  0,  3;
   5,  0,  5,  0,  5;
   0,  8,  0,  8,  0,  8;
  13,  0, 13,  0, 13,  0, 13;
   0, 21,  0, 21,  0, 21,  0, 21,
  ...
		

Crossrefs

Programs

  • Magma
    [((n+k+1) mod 2)*Fibonacci(n): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 17 2024
    
  • Mathematica
    Table[Fibonacci[n]*Mod[n+k+1,2], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 16 2024 *)
  • SageMath
    flatten([[((n+k+1)%2)*fibonacci(n) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 17 2024

Formula

T(n, k) = A127647 * A128174, an infinite lower triangular matrix. In odd rows, n terms of F(n), 0, F(n),...; in the n-th row. In even rows, n terms of 0, F(n), 0,...; in the n-th row.
Sum_{k=1..n} T(n, k) = A128620(n-1).
From G. C. Greubel, Mar 16 2024: (Start)
T(n, k) = Fibonacci(n)*(1 + (-1)^(n+k))/2.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^n*A128620(n-1).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1-(-1)^n)*A096140(floor((n + 1)/2)).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1 - (-1)^n)*( Fibonacci(n-1) + (-1)^floor((n-1)/2) * Fibonacci(floor((n-3)/2)) ). (End)

A128618 Triangle read by rows: A128174 * A127647 as infinite lower triangular matrices.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 1, 0, 2, 0, 5, 0, 1, 0, 3, 0, 8, 1, 0, 2, 0, 5, 0, 13, 0, 1, 0, 3, 0, 8, 0, 21, 1, 0, 2, 0, 5, 0, 13, 0, 34, 0, 1, 0, 3, 0, 8, 0, 21, 0, 55, 1, 0, 2, 0, 5, 0, 13, 0, 34, 0, 89, 0, 1, 0, 3, 0, 8, 0, 21, 0, 55, 0, 144, 1, 0, 2, 0, 5, 0, 13, 0, 34, 0, 89, 0, 233
Offset: 1

Views

Author

Gary W. Adamson, Mar 14 2007

Keywords

Comments

This triangle is different from A128619, which is A128619 = A127647 * A128174.

Examples

			First few rows of the triangle are:
  1;
  0, 1;
  1, 0, 2;
  0, 1, 0, 3;
  1, 0, 2, 0, 5;
  0, 1, 0, 3, 0, 8;
  1, 0, 2, 0, 5, 0, 13;
  0, 1, 0, 3, 0, 8,  0, 21;
  1, 0, 2, 0, 5, 0, 13,  0, 34;
  0, 1, 0, 3, 0, 8,  0, 21,  0, 55;
  1, 0, 2, 0, 5, 0, 13,  0, 34,  0, 89;
  ...
		

Crossrefs

Programs

  • Magma
    [((n+k+1) mod 2)*Fibonacci(k): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 17 2024
    
  • Mathematica
    Table[Fibonacci[k]*Mod[n-k+1,2], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 17 2024 *)
  • SageMath
    flatten([[((n-k+1)%2)*fibonacci(k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 17 2024

Formula

By columns, Fibonacci(k) interspersed with alternate zeros in every column, k=1,2,3,...
Sum_{k=1..n} T(n, k) = A052952(n-1) (row sums).
From G. C. Greubel, Mar 17 2024: (Start)
T(n, k) = (1/2)*(1 + (-1)^(n+k))*Fibonacci(k).
T(n, n) = A000045(n).
T(2*n-1, n) = (1/2)*(1-(-1)^n)*A000045(n).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n-1)*A052952(n-1).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1 - (-1)^n)*(Fibonacci((n+ 5)/2) - 1).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1-(-1)^n) * A355020(floor((n-1)/2)). (End)

Extensions

a(6) corrected and more terms from Georg Fischer, May 30 2023

A153281 Triangle read by rows, A130321 * A127647. Also, number of subsets of [n+2] with consecutive integers that start at k.

Original entry on oeis.org

1, 2, 1, 4, 2, 2, 8, 4, 4, 3, 16, 8, 8, 6, 5, 32, 16, 16, 12, 10, 8, 64, 32, 32, 24, 20, 16, 13, 128, 64, 64, 48, 40, 32, 26, 21, 256, 128, 128, 96, 80, 64, 52, 42, 34, 512, 256, 256, 192, 160, 128, 104, 84, 68, 55
Offset: 0

Views

Author

Gary W. Adamson, Dec 23 2008

Keywords

Comments

Row sums = A008466(k-2): (1, 3, 8, 19, 43, 94, ...).
T(n,k) is the number of subsets of {1,...,n+2} that contain consecutive integers and that have k as the first integer in the first consecutive string. (See the example below.) Hence rows sums of T(n,k) give the number of subsets of {1,...,n+2} that contain consecutive integers. Also, T(n,k) = F(k)*2^(n+1-k), where F(k) is the k-th Fibonacci number, since there are F(k) subsets of {1,...,k-2} that contain no consecutive integers and there are 2^(n+1-k) subsets of {k+2,...,n+2}. [Dennis P. Walsh, Dec 21 2011]

Examples

			First few rows of the triangle:
    1;
    2,   1;
    4,   2,   2;
    8,   4,   4,   3;
   16,   8,   8,   6,   5;
   32,  16,  16,  12,  10,   8;
   64,  32,  32,  24,  20,  16,  13;
  128,  64,  64,  48,  40,  32,  26,  21;
  256, 128, 128,  96,  80,  64,  52,  42,  34;
  512, 256, 256, 192, 160, 128, 104,  84,  68,  55;
  ...
Row 4 = (16, 8, 8, 6, 5) = termwise products of (16, 8, 4, 2, 1) and (1, 1, 2, 3, 5).
For n=5 and k=3, T(5,3)=16 since there are 16 subsets of {1,2,3,4,5,6,7} containing consecutive integers with 3 as the first integer in the first consecutive string, namely,
  {1,3,4}, {1,3,4,5}, {1,3,4,6}, {1,3,4,7}, {1,3,4,5,6}, {1,3,4,5,7}, {1,3,4,6,7}, {1,3,4,5,6,7}, {3,4}, {3,4,5}, {3,4,6}, {3,4,7}, {3,4,5,6}, {3,4,5,7}, {3,4,6,7}, and {3,4,5,6,7}. [_Dennis P. Walsh_, Dec 21 2011]
		

Crossrefs

Programs

  • Maple
    with(combinat, fibonacci):
    seq(seq(2^(n+1-k)*fibonacci(k),k=1..(n+1)),n=0..10);
  • Mathematica
    Table[2^(n+1-k) Fibonacci[k],{n,0,10},{k,n+1}]//Flatten (* Harvey P. Dale, Apr 26 2020 *)

Formula

Triangle read by rows, A130321 * A127647. A130321 = an infinite lower triangular matrix with powers of 2: (A000079) in every column: (1, 2, 4, 8, ...).
A127647 = an infinite lower triangular matrix with the Fibonacci numbers, A000045 as the main diagonal and the rest zeros.
T(n,k)=2^(n+1-k)*F(k) where F(k) is the k-th Fibonacci number. [Dennis Walsh, Dec 21 2011]

A128589 A051731 * A127647.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 0, 3, 1, 0, 0, 0, 5, 1, 1, 2, 0, 0, 8, 1, 0, 0, 0, 0, 0, 13, 1, 1, 0, 3, 0, 0, 0, 21, 1, 0, 2, 0, 0, 0, 0, 0, 34, 1, 1, 0, 0, 5, 0, 0, 0, 0, 55
Offset: 1

Views

Author

Gary W. Adamson, Mar 11 2007

Keywords

Comments

Row sums = A007435: (1, 2, 3, 5, 6, 12, 14, ...), inverse Moebius transform of the Fibonacci numbers.

Examples

			First few rows of the triangle:
  1;
  1, 1;
  1, 0, 2;
  1, 1, 0, 3;
  1, 0, 0, 0, 5;
  1, 1, 2, 0, 0, 8;
  ...
		

Crossrefs

Formula

Inverse Moebius transform of A127647, as infinite lower triangular matrices.

A007435 Inverse Moebius transform of Fibonacci numbers 1,1,2,3,5,8,...

Original entry on oeis.org

1, 2, 3, 5, 6, 12, 14, 26, 37, 62, 90, 159, 234, 392, 618, 1013, 1598, 2630, 4182, 6830, 10962, 17802, 28658, 46548, 75031, 121628, 196455, 318206, 514230, 832722, 1346270, 2179322, 3524670, 5704486, 9227484, 14933129, 24157818, 39092352, 63246222, 102341006
Offset: 1

Views

Author

Keywords

Comments

For p prime, a(p) == k (mod p) where k = 0 if p == 2, 3 (mod 5), k = 2 if p == 1, 4 (mod 5) and k = 1 if p = 5. - Michael Somos, Apr 15 2012

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 6*x^5 + 12*x^6 + 14*x^7 + 26*x^8 + 37*x^9 + 62*x^10 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(combinat[fibonacci](d), d in divisors(n)), n=1..60); # Ridouane Oudra, Apr 12 2025
  • Mathematica
    Table[Plus @@ Map[Function[d, Fibonacci[d]], Divisors[n]], {n, 100}] (* T. D. Noe, Aug 14 2012 *)
    a[n_] := DivisorSum[n, Fibonacci]; Array[a, 40] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, k, fibonacci(k)))} /* Michael Somos, Apr 15 2012 */

Formula

Row sums of A051731 * A127647. - Gary W. Adamson, Jan 22 2007
G.f.: Sum_{k>0} Fibonacci(k)*x^k/(1-x^k) = Sum_{k>0} x^k/(1-x^k-x^(2*k)). - Vladeta Jovovic, Dec 17 2002
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(Fibonacci(k)/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 20 2018
a(n) ~ 5^(-1/2) * phi^n, where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 21 2018
From Ridouane Oudra, Apr 12 2025 : (Start)
a(n) = Sum_{d|n} Fibonacci(d).
a(n) = Sum_{d|n} mu(d)*A034772(n/d).
a(n) = A245282(n) - A108046(n).
a(n) = 2*A245282(n) - A100107(n).
a(n) = (A108031(n) + A108046(n))/2. (End)

Extensions

More terms from Joerg Arndt, Aug 14 2012

A007436 Moebius transform of Fibonacci numbers.

Original entry on oeis.org

1, 0, 1, 2, 4, 6, 12, 18, 32, 50, 88, 134, 232, 364, 604, 966, 1596, 2544, 4180, 6708, 10932, 17622, 28656, 46206, 75020, 121160, 196384, 317432, 514228, 831374, 1346268, 2177322, 3524488, 5701290, 9227448, 14927632, 24157816, 39083988
Offset: 1

Views

Author

Keywords

Comments

After a(4) = 2, there are no primes in this sequence. Every element thereafter has at least two prime factors, the semiprimes (intersection of A007436 and A001358) starting 4, 6, 134, 831374, ... - Jonathan Vos Post, Dec 15 2004

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001358.

Programs

  • Mathematica
    mt[n_] := Block[{d = Divisors[n]}, Plus @@ (MoebiusMu /@ (n/d)*Fibonacci /@ d)]; Table[ mt[n], {n, 38}] (* Robert G. Wilson v Dec 10 2004 *)
    a[n_] := DivisorSum[n, Fibonacci[#] MoebiusMu[n/#]&]; Array[a, 40] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    a(n)=sumdiv(n,d,fibonacci(d)*moebius(n/d))

Formula

Row sums of the triangle generated by A054525 * A127647. - Gary W. Adamson, Jan 22 2007
G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x/(1 - x - x^2). - Ilya Gutkovskiy, Apr 25 2017

Extensions

More terms from Robert G. Wilson v, Dec 10 2004
Showing 1-10 of 16 results. Next