A128540 Triangle A127647 * A097806, read by rows.
1, 1, 1, 0, 2, 2, 0, 0, 3, 3, 0, 0, 0, 5, 5, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 13, 13, 0, 0, 0, 0, 0, 0, 21, 21, 0, 0, 0, 0, 0, 0, 0, 34, 34, 0, 0, 0, 0, 0, 0, 0, 0, 55, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 89, 89, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 144
Offset: 1
Examples
First few rows of the triangle: 1; 1, 1; 0, 2, 2; 0, 0, 3, 3; 0, 0, 0, 5, 5; 0, 0, 0, 0, 8, 8; ...
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
Magma
[k eq n select Fibonacci(n) else k eq n-1 select Fibonacci(n) else 0: k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 11 2019
-
Mathematica
Table[If[k==n || k==n-1, Fibonacci[n], 0], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Jul 11 2019 *)
-
PARI
T(n,k) = if(k==n || k==n-1, fibonacci(n), 0); \\ G. C. Greubel, Jul 11 2019
-
Sage
def T(n, k): if (k==n): return fibonacci(n) elif (k==n-1): return fibonacci(n) else: return 0 [[T(n, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 11 2019
Comments