cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127662 Integers whose infinitary aliquot sequences end in an infinitary perfect number (A007357).

Original entry on oeis.org

6, 30, 42, 54, 60, 66, 72, 78, 90, 100, 140, 148, 152, 192, 194, 196, 208, 220, 238, 244, 252, 268, 274, 292, 296, 298, 300, 336, 348, 350, 360, 364, 372, 374, 380, 382, 386, 400, 416, 420, 424, 476, 482, 492, 516, 520, 532, 540, 542, 544, 550, 572, 576, 578, 586
Offset: 1

Views

Author

Ant King, Jan 26 2007

Keywords

Examples

			a(5) = 60 because the fifth number whose infinitary aliquot sequence ends in an infinitary perfect number is 60.
6 -> 6 ...
30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
54 -> 66 -> 78 -> 90 -> 90 -> ..
60 -> 60 -> ..
66 -> 78 -> 90 -> 90 -> ..
72 -> 78 -> 90 -> 90 -> ..
78 -> 90 -> 90 -> ..
90 -> 90 -> ..
100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
102 -> 114 -> 126 -> 114 -> ..  cycle but not in the sequence
114 -> 126 -> 114 -> .. cycle but not in the sequence
126 -> 114 -> 126 -> ..
140 -> 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
148 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
152 -> 148 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
192 -> 148 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
194 -> 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
196 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
208 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
210 -> 366 -> 378 -> 582 -> 594 -> 846 -> 594 -> ..
220 -> 140 -> 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
238 -> 194 -> 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
244 -> 66 -> 78 -> 90 -> 90 -> ..
246 -> 258 -> 270 -> 450 -> 330 -> 534 -> 546 -> 798 -> 1122 -> 1470 -> 2130 -> 3054 -> 3066 -> 4038 -> 4050 -> 2346 -> 2838 -> 3498 -> 4278 -> 4938 -> 4950 -> 4410 -> 4590 -> 8370 -> 14670 -> 14850 -> 22590 -> 22770 -> 29070 -> 35730 -> 35910 -> 79290 -> 79470 -> 79650 -> 107550 -> 79650 -> ..
		

Crossrefs

Programs

  • Maple
    isA007357 := proc(n)
        A049417(n) = 2*n ;
        simplify(%) ;
    end proc:
    isA127662 := proc(n)
        local trac,x;
        x := n ;
        trac := [x] ;
        while true do
            x := A049417(x)-trac[-1] ;
            if x = 0 then
                return false ;
            elif x in trac then
                return isA007357(x) ;
            end if;
            trac := [op(trac),x] ;
        end do:
    end proc:
    for n from 1 do
        if isA127662(n) then
            printf("%d,\n",n) ;
        end if;
    end do: # R. J. Mathar, Oct 05 2017
  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];InfinitaryPerfectNumberQ[0]=False;InfinitaryPerfectNumberQ[k_Integer] :=If[properinfinitarydivisorsum[k]==k,True,False];Select[Range[500],InfinitaryPerfectNumberQ[Last[iTrajectory[ # ]]] &]
    s[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n; s[0] = s[1] = 0; q[n_] := Module[{v = NestWhileList[s, n, UnsameQ, All]}, v[[-1]] != n && v[[-2]] == v[[-1]] > 0]; Select[Range[3200], q] (* Amiram Eldar, Mar 11 2023 *)

Extensions

More terms from Amiram Eldar, Mar 11 2023