A127699 Length of period of the sequence (1^1^1^..., 2^2^2^..., 3^3^3^..., 4^4^4^..., ...) modulo n.
1, 2, 6, 4, 20, 6, 42, 8, 18, 20, 220, 12, 156, 42, 60, 16, 272, 18, 342, 20, 42, 220, 5060, 24, 100, 156, 54, 84, 2436, 60, 1860, 32, 660, 272, 420, 36, 1332, 342, 156, 40, 1640, 42, 1806, 220, 180, 5060, 237820, 48, 294, 100, 816, 156, 8268, 54, 220, 168
Offset: 1
Examples
a(10)=20 because the last digit of 1^1^1^.. is 1; the sequence 2,2^2,2^2^2,.. ends with 2,4,6,6,...; the sequence 3,3^3,3^3^3,... with 3,7,7,...; 4,4^4,4^4^4,... with 4,6,6,...; and so on. We get as last digits 1,6,7,6,5,6,3,6,9,0, 1,6,3,6,5,6,7,6,9,0 and then the pattern repeats.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)
- Daniel B. Shapiro and S. David Shapiro, Iterated Exponents in Number Theory, Integers 7 (2007), #A23.
Crossrefs
Cf. A002322.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=1, 1, ilcm(n, a(numtheory[lambda](n)))) end: seq(a(n), n=1..56); # Alois P. Heinz, Jan 03 2023
-
Mathematica
nn=100; a=Table[0,{nn}]; a[[1]]=1; Do[a[[n]]=LCM[n,a[[CarmichaelLambda[n]]]], {n,2,nn}]; a (* T. D. Noe, Jan 30 2009 *)
-
Python
from functools import lru_cache from math import lcm from sympy import reduced_totient @lru_cache(maxsize=None) def A127699(n): return 1 if n == 1 else lcm(n, A127699(reduced_totient(n))) # Chai Wah Wu, Jan 03 2023
Formula
a(n) = lcm(n, a(lambda(n))), where lambda is Carmichael's reduced totient function. - T. D. Noe, Jan 30 2009
Comments