A127720 Floor of square root of sum of squares of n odd consecutive primes.
3, 5, 9, 14, 19, 25, 31, 39, 48, 57, 68, 80, 90, 102, 115, 129, 143, 157, 173, 187, 203, 220, 237, 256, 275, 294, 313, 331, 350, 372, 394, 418, 440, 465, 488, 513, 538, 564, 590, 616, 642, 670, 697, 724, 751, 780, 811, 843, 873
Offset: 1
Keywords
Programs
-
Maple
A024450 := proc(n) local i ; add((ithprime(i))^2,i=1..n) ; end: Ax := proc(n) A024450(n+1)-4 ; end: A000196 := proc(n) floor(sqrt(n)) ; end: A127720 := proc(n) A000196(Ax(n)) ; end: for n from 1 to 30 do printf("%d, ",A127720(n)) ; od ; # R. J. Mathar, Jan 28 2007
-
Mathematica
a = {}; k = 0; Do[k = k + (Prime[x])^2; AppendTo[a, Floor[Sqrt[k]]], {x, 2, 50}]; a Module[{nn=50},Floor[Sqrt[#]]&/@Accumulate[Prime[Range[2,nn+1]]^2]] (* Harvey P. Dale, Jul 27 2017 *)