A127854 Largest number k such that k^2 divides A007781(6n+1).
19, 61, 127, 217, 331, 469, 631, 817, 1027, 1261, 1519, 1801, 2107, 2437, 2791, 3169, 3571, 3997, 4447, 4921, 5419, 5941, 6487, 7057, 7651, 8269, 8911, 9577, 10267, 10981, 11719, 12481, 13267, 14077, 14911, 15769, 16651, 17557, 18487, 19441
Offset: 1
Keywords
Formula
Conjecture: a(n) = 12n^2 + 6n + 1.
Conjecture: a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); g.f.: x*(19 + 4*x + x^2)/(1-x)^3. - Colin Barker, Mar 16 2012
These conjectures are false. For n=74, 12*n^2 + 6*n + 1 = 66157 but A007781(6*74+1) is divisible by 5491031^2. - Robert Israel, Nov 19 2017
Extensions
a(24) corrected by T. D. Noe, Mar 14 2008
Comments