cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007781 a(n) = (n+1)^(n+1) - n^n for n>0, a(0) = 1.

Original entry on oeis.org

1, 3, 23, 229, 2869, 43531, 776887, 15953673, 370643273, 9612579511, 275311670611, 8630788777645, 293959006143997, 10809131718965763, 426781883555301359, 18008850183328692241, 808793517812627212561
Offset: 0

Views

Author

Peter McCormack (peter.mccormack(AT)its.csiro.au)

Keywords

Comments

(12n^2 + 6n + 1)^2 divides a(6n+1), where (12n^2 + 6n + 1) = (2n+1)^3 - (2n)^3 = A127854(n) = A003215(2n) are the hex (or centered hexagonal) numbers. The prime numbers of the form 12n^2 + 6n + 1 belong to A002407. - Alexander Adamchuk, Apr 09 2007

Examples

			a(14) = 10809131718965763 = 3 * 61^2 * 968299894201.
		

References

  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see equation (6.7).

Crossrefs

Programs

Formula

a(n) = A000312(n+1) - A000312(n) for n>0, a(0) = 1.
a(n) = abs(discriminant(x^(n+1)-x+1)).
E.g.f.: W(-x)/(1+W(-x)) - W(-x)/((1+W(-x))^3*x) where W is the Lambert W function. - Robert Israel, Aug 19 2015
Limit_{n->oo} (a(n+2)/a(n+1) - a(n+1)/a(n)) = e (Cusumano, 2007). - Amiram Eldar, Jan 03 2022

A213027 Number A(n,k) of 3n-length k-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word; square array A(n,k), n>=0, k>=0, by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 4, 1, 0, 1, 1, 7, 19, 1, 0, 1, 1, 10, 61, 98, 1, 0, 1, 1, 13, 127, 591, 531, 1, 0, 1, 1, 16, 217, 1810, 6101, 2974, 1, 0, 1, 1, 19, 331, 4085, 27631, 65719, 17060, 1, 0, 1, 1, 22, 469, 7746, 82593, 441604, 729933, 99658, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 03 2012

Keywords

Comments

In general, column k > 1 is asymptotic to a(n) ~ 3^(3*n+1/2) * (k-1)^(n+1) / (sqrt(Pi) * (2*k-3)^2 * 4^n * n^(3/2)). - Vaclav Kotesovec, Aug 31 2014

Examples

			A(0,k) = 1: the empty word.
A(n,1) = 1: (aaa)^n.
A(2,2) = 4: there are 4 words of length 6 over alphabet {a,b}, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word: aaaaaa, aaabbb, aabbba, abbbaa.
A(2,3) = 7: aaaaaa, aaabbb, aaaccc, aabbba, aaccca, abbbaa, acccaa.
A(3,2) = 19: aaaaaaaaa, aaaaaabbb, aaaaabbba, aaaabbbaa, aaabaaabb, aaabbaaab, aaabbbaaa, aaabbbbbb, aabaaabba, aabbaaaba, aabbbaaaa, aabbbabbb, aabbbbbba, abaaabbaa, abbaaabaa, abbbaaaaa, abbbaabbb, abbbabbba, abbbbbbaa.
Square array A(n,k) begins:
  1, 1,    1,     1,      1,       1,       1, ...
  0, 1,    1,     1,      1,       1,       1, ...
  0, 1,    4,     7,     10,      13,      16, ...
  0, 1,   19,    61,    127,     217,     331, ...
  0, 1,   98,   591,   1810,    4085,    7746, ...
  0, 1,  531,  6101,  27631,   82593,  195011, ...
  0, 1, 2974, 65719, 441604, 1751197, 5153626, ...
		

Crossrefs

Rows n=0-3 give: A000012, A057427, A016777(k-1), A127854(k-1).
Main diagonal gives: A218472.

Programs

  • Maple
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k,
        1/n *add(binomial(3*n, j) *(n-j) *(k-1)^j, j=0..n-1))):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    a[0, ] = 1; a[, k_ /; k < 2] := k; a[n_, k_] := 1/n*Sum[Binomial[3*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}]; Table[a[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)

Formula

A(n,k) = 1/n * Sum_{j=0..n-1} C(3*n,j) * (n-j) * (k-1)^j if n>0, k>1; A(0,k) = 1; A(n,k) = k if n>0, k<2.
A(n,k) = 1/k * A213028(n,k) if n>0, k>1; else A(n,k) = A213028(n,k).
Showing 1-2 of 2 results.