cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127878 a(n) = n^4 + 4*n^3 + 12*n^2 + 24*n + 24.

Original entry on oeis.org

24, 65, 168, 393, 824, 1569, 2760, 4553, 7128, 10689, 15464, 21705, 29688, 39713, 52104, 67209, 85400, 107073, 132648, 162569, 197304, 237345, 283208, 335433, 394584, 461249, 536040, 619593, 712568, 815649, 929544, 1054985, 1192728
Offset: 0

Views

Author

Artur Jasinski, Feb 04 2007

Keywords

Comments

Generating polynomial is Schur's polynomial of 4-degree. Schur's polynomials n degree are n-th first term of series expansion of e^x function. All polynomials are non-reducible and belonging to the An alternating Galois transitive group if n is divisible by 4 or to Sn symmetric Galois Group in other case (proof Schur, 1930).

Crossrefs

Programs

  • GAP
    List([0..40],n->n^4+4*n^3+12*n^2+24*n+24); # Muniru A Asiru, Apr 30 2018
  • Magma
    [n^4 +4*n^3 +12*n^2 +24*n +24: n in [0..30]]; // G. C. Greubel, Apr 29 2018
    
  • Maple
    seq(n^4+4*n^3+12*n^2+24*n+24,n=0..40); # Muniru A Asiru, Apr 30 2018
  • Mathematica
    Table[24 + 24*n + 12*n^2 + 4*n^3 + n^4, {n, 0, 50}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {24, 65, 168, 393, 824}, 50] (* G. C. Greubel, Apr 29 2018 *)
  • PARI
    for(n=0,30, print1(n^4 +4*n^3 +12*n^2 +24*n +24, ", ")) \\ G. C. Greubel, Apr 29 2018
    

Formula

Integral representation in terms of incomplete Gamma function : a(n)= Exp[n]Gamma[5,n], where Gamma[5,n]= Integrate[x^4 Exp[ -x], {x, n, +infinity}]. - N-E. Fahssi, Jan 25 2008
G.f.: (24 -55*x +83*x^2 -37*x^3 +9*x^4)/(1-x)^5. - Colin Barker, Apr 02 2012
E.g.f.: (24 + 41*x + 31*x^2 + 10*x^3 + x^4)*exp(x). - G. C. Greubel, Apr 29 2018