A364522
G.f. satisfies A(x) = 1 + x*A(x) + x^5*A(x)^5.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 258, 518, 1123, 2718, 7008, 18054, 44969, 108189, 255919, 609179, 1482210, 3689155, 9294440, 23419705, 58639835, 145948111, 362721386, 904673836, 2270287636, 5729191861, 14502873988, 36735974548, 93001413353, 235372519273
Offset: 0
-
a(n) = sum(k=0, n\5, binomial(n, 5*k)*binomial(5*k, k)/(4*k+1));
A364523
G.f. satisfies A(x) = 1 + x*A(x) + x^6*A(x)^6.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 463, 931, 1795, 3550, 7736, 18929, 49505, 130000, 330430, 804271, 1885675, 4327555, 9929515, 23224435, 55907251, 138016906, 345107296, 862546231, 2136402451, 5231163232, 12697101118, 30723857209, 74569942745
Offset: 0
-
a(n) = sum(k=0, n\6, binomial(n, 6*k)*binomial(6*k, k)/(5*k+1));
A369126
Expansion of (1/x) * Series_Reversion( x / ((1+x)^4+x^4) ).
Original entry on oeis.org
1, 4, 22, 140, 970, 7104, 54096, 424008, 3398224, 27721024, 229410328, 1921308272, 16253502512, 138683973120, 1192142838656, 10314377770720, 89749921081280, 784913791336192, 6895599255571840, 60825440855493376, 538507243041624864, 4783482648574893056
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^4+x^4))/x)
-
a(n) = sum(k=0, n\4, binomial(n+1, k)*binomial(4*n-4*k+4, n-4*k))/(n+1);
A240904
Number of lattice paths from (0,0) to (n,0) that do not go below the x-axis or above the diagonal x=y and consist of steps u=(1,1), U=(1,3), H=(1,0), d=(1,-1) and D=(1,-3).
Original entry on oeis.org
1, 1, 2, 4, 12, 34, 118, 396, 1508, 5670, 22773, 91337, 381157, 1597683, 6855957, 29599117, 129748149, 572349631, 2551033858, 11435935450, 51651644306, 234472103672, 1070461943299, 4908349870799, 22607570625188, 104515879798724, 484955119433493
Offset: 0
a(0) = 1: the empty path.
a(1) = 1: H.
a(2) = 2: HH, ud.
a(3) = 4: HHH, udH, Hud, uHd.
a(4) = 12: HHHH, udHH, HudH, uHdH, HHud, udud, HuHd, uHHd, uudd, HHUD, udUD, uuuD.
a(5) = 34: HHHHH, udHHH, HudHH, uHdHH, HHudH, ududH, HuHdH, uHHdH, uuddH, HHUDH, udUDH, uuuDH, HHHud, udHud, Hudud, uHdud, HHuHd, uduHd, HuHHd, uHHHd, uudHd, Huudd, uHudd, uuHdd, HHHUD, udHUD, HudUD, uHdUD, HuuuD, uHuuD, uuHuD, HHUHD, udUHD, uuuHD.
-
b:= proc(x, y) option remember; `if`(y<0 or x b(n, 0):
seq(a(n), n=0..30);
-
b[x_, y_] := b[x, y] = If[y<0 || xJean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
A364552
G.f. satisfies A(x) = 1 + x*A(x) + x^4*A(x)^3.
Original entry on oeis.org
1, 1, 1, 1, 2, 5, 11, 21, 39, 78, 169, 373, 808, 1727, 3719, 8153, 18100, 40315, 89770, 200250, 448755, 1010685, 2284295, 5173961, 11740697, 26699780, 60863291, 139045991, 318247190, 729572315, 1675085099, 3851795549, 8869990949, 20453679944, 47223844863
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(n-k, 3*k)*binomial(3*k, k)/(2*k+1));
A365733
G.f. satisfies A(x) = 1 + x*A(x)*(1 + x^5*A(x)^3).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 6, 16, 36, 71, 127, 215, 367, 676, 1376, 2982, 6514, 13855, 28407, 56543, 111127, 219918, 444450, 919744, 1933732, 4082467, 8576027, 17861347, 36938427, 76207797, 157652981, 328119005, 687377565, 1446665765, 3050094661, 6427116181
Offset: 0
-
a(n) = sum(k=0, n\6, binomial(n-5*k, k)*binomial(n-2*k+1, n-5*k)/(n-2*k+1));
A369158
Expansion of (1/x) * Series_Reversion( x / ((1+x)^2+x^4) ).
Original entry on oeis.org
1, 2, 5, 14, 43, 142, 495, 1794, 6686, 25436, 98311, 384826, 1522283, 6075838, 24437937, 98956270, 403080170, 1650502292, 6790018182, 28050896964, 116322826479, 484029536374, 2020386475025, 8457397801150, 35495812337114, 149336478356692, 629685490668799
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2+x^4))/x)
-
a(n) = sum(k=0, n\4, binomial(n+1, k)*binomial(2*n-2*k+2, n-4*k))/(n+1);
A366646
G.f. A(x) satisfies A(x) = 1 + (x * A(x) / (1 - x))^4.
Original entry on oeis.org
1, 0, 0, 0, 1, 4, 10, 20, 39, 88, 228, 600, 1507, 3652, 8866, 22100, 56365, 144656, 369784, 942480, 2408934, 6196280, 16026652, 41571640, 107959654, 280708560, 731349400, 1910098320, 4999759830, 13109582376, 34421585844, 90500370760, 238272324682
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(n-1, n-4*k)*binomial(4*k, k)/(3*k+1));
A367115
G.f. satisfies A(x) = 1 + 2*x*A(x) + 2*x^4*A(x)^4.
Original entry on oeis.org
1, 2, 4, 8, 18, 52, 184, 688, 2512, 8864, 30784, 107648, 384432, 1403872, 5205568, 19443328, 72817856, 273199488, 1027939072, 3883718144, 14741042464, 56189409088, 214931447680, 824443822848, 3169934397184, 12214858010112, 47168251137024
Offset: 0
-
a(n) = sum(k=0, n\4, 2^(n-3*k)*binomial(n, 4*k)*binomial(4*k, k)/(3*k+1));
A369159
Expansion of (1/x) * Series_Reversion( x / ((1+x)^3+x^4) ).
Original entry on oeis.org
1, 3, 12, 55, 274, 1443, 7905, 44593, 257305, 1511553, 9010170, 54361486, 331336454, 2037132958, 12619056108, 78682008194, 493427982703, 3110202012353, 19693920616872, 125214061831251, 799059649687239, 5116372686471627, 32860439054510610
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^3+x^4))/x)
-
a(n) = sum(k=0, n\4, binomial(n+1, k)*binomial(3*n-3*k+3, n-4*k))/(n+1);
Showing 1-10 of 14 results.
Comments