cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A364522 G.f. satisfies A(x) = 1 + x*A(x) + x^5*A(x)^5.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 258, 518, 1123, 2718, 7008, 18054, 44969, 108189, 255919, 609179, 1482210, 3689155, 9294440, 23419705, 58639835, 145948111, 362721386, 904673836, 2270287636, 5729191861, 14502873988, 36735974548, 93001413353, 235372519273
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2023

Keywords

Comments

Number of ordered trees with n edges and having nonleaf nodes of outdegrees 1 or 5. - Emanuele Munarini, Jul 11 2024

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, binomial(n, 5*k)*binomial(5*k, k)/(4*k+1));

Formula

a(n) = Sum_{k=0..floor(n/5)} binomial(n,5*k) * binomial(5*k,k) / (4*k+1).

A364523 G.f. satisfies A(x) = 1 + x*A(x) + x^6*A(x)^6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 463, 931, 1795, 3550, 7736, 18929, 49505, 130000, 330430, 804271, 1885675, 4327555, 9929515, 23224435, 55907251, 138016906, 345107296, 862546231, 2136402451, 5231163232, 12697101118, 30723857209, 74569942745
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2023

Keywords

Comments

Number of ordered trees with n edges and having nonleaf nodes of outdegrees 1 or 6. - Emanuele Munarini, Jul 11 2024

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\6, binomial(n, 6*k)*binomial(6*k, k)/(5*k+1));

Formula

a(n) = Sum_{k=0..floor(n/6)} binomial(n,6*k) * binomial(6*k,k) / (5*k+1).

A369126 Expansion of (1/x) * Series_Reversion( x / ((1+x)^4+x^4) ).

Original entry on oeis.org

1, 4, 22, 140, 970, 7104, 54096, 424008, 3398224, 27721024, 229410328, 1921308272, 16253502512, 138683973120, 1192142838656, 10314377770720, 89749921081280, 784913791336192, 6895599255571840, 60825440855493376, 538507243041624864, 4783482648574893056
Offset: 0

Views

Author

Seiichi Manyama, Jan 13 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^4+x^4))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+1, k)*binomial(4*n-4*k+4, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+1,k) * binomial(4*n-4*k+4,n-4*k).
D-finite with recurrence -3*(3*n+2)*(3*n+4)*(1746*n-6043)*(n+1)*a(n) +4*(519282*n^4 -1632448*n^3 +319539*n^2 +77803*n-72516)*a(n-1) +16*(-1055610*n^4 +5245655*n^3 -8423433*n^2 +5306215*n-1129842)*a(n-2) +96*(n-2) *(150552*n^3 -673240*n^2 +868987*n -301954)*a(n-3) -64*(n-2) *(n-3) *(174726*n^2 -528221*n +220460)*a(n-4) -512*(7353*n-3733)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jan 24 2024

A240904 Number of lattice paths from (0,0) to (n,0) that do not go below the x-axis or above the diagonal x=y and consist of steps u=(1,1), U=(1,3), H=(1,0), d=(1,-1) and D=(1,-3).

Original entry on oeis.org

1, 1, 2, 4, 12, 34, 118, 396, 1508, 5670, 22773, 91337, 381157, 1597683, 6855957, 29599117, 129748149, 572349631, 2551033858, 11435935450, 51651644306, 234472103672, 1070461943299, 4908349870799, 22607570625188, 104515879798724, 484955119433493
Offset: 0

Views

Author

Alois P. Heinz, Apr 14 2014

Keywords

Examples

			a(0) = 1: the empty path.
a(1) = 1: H.
a(2) = 2: HH, ud.
a(3) = 4: HHH, udH, Hud, uHd.
a(4) = 12: HHHH, udHH, HudH, uHdH, HHud, udud, HuHd, uHHd, uudd, HHUD, udUD, uuuD.
a(5) = 34: HHHHH, udHHH, HudHH, uHdHH, HHudH, ududH, HuHdH, uHHdH, uuddH, HHUDH, udUDH, uuuDH, HHHud, udHud, Hudud, uHdud, HHuHd, uduHd, HuHHd, uHHHd, uudHd, Huudd, uHudd, uuHdd, HHHUD, udHUD, HudUD, uHdUD, HuuuD, uHuuD, uuHuD, HHUHD, udUHD, uuuHD.
		

Crossrefs

Cf. A001006 (without steps U, D), A127902 (without steps U, d), A247748.
Row sums of A247749.

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or x b(n, 0):
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_] := b[x, y] = If[y<0 || xJean-François Alcover, Dec 20 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * 5^n / n^(3/2), where c = 0.027245791342943908483296328462... . - Vaclav Kotesovec, Aug 28 2014

A364552 G.f. satisfies A(x) = 1 + x*A(x) + x^4*A(x)^3.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 11, 21, 39, 78, 169, 373, 808, 1727, 3719, 8153, 18100, 40315, 89770, 200250, 448755, 1010685, 2284295, 5173961, 11740697, 26699780, 60863291, 139045991, 318247190, 729572315, 1675085099, 3851795549, 8869990949, 20453679944, 47223844863
Offset: 0

Views

Author

Seiichi Manyama, Jul 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-k, 3*k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n-k,3*k) * binomial(3*k,k) / (2*k+1).

A365733 G.f. satisfies A(x) = 1 + x*A(x)*(1 + x^5*A(x)^3).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 6, 16, 36, 71, 127, 215, 367, 676, 1376, 2982, 6514, 13855, 28407, 56543, 111127, 219918, 444450, 919744, 1933732, 4082467, 8576027, 17861347, 36938427, 76207797, 157652981, 328119005, 687377565, 1446665765, 3050094661, 6427116181
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\6, binomial(n-5*k, k)*binomial(n-2*k+1, n-5*k)/(n-2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/6)} binomial(n-5*k,k) * binomial(n-2*k+1,n-5*k) / (n-2*k+1) = Sum_{k=0..floor(n/6)} binomial(n-2*k,4*k) * binomial(4*k,k) / (3*k+1).

A369158 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2+x^4) ).

Original entry on oeis.org

1, 2, 5, 14, 43, 142, 495, 1794, 6686, 25436, 98311, 384826, 1522283, 6075838, 24437937, 98956270, 403080170, 1650502292, 6790018182, 28050896964, 116322826479, 484029536374, 2020386475025, 8457397801150, 35495812337114, 149336478356692, 629685490668799
Offset: 0

Views

Author

Seiichi Manyama, Jan 15 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2+x^4))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+1, k)*binomial(2*n-2*k+2, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+1,k) * binomial(2*n-2*k+2,n-4*k).

A366646 G.f. A(x) satisfies A(x) = 1 + (x * A(x) / (1 - x))^4.

Original entry on oeis.org

1, 0, 0, 0, 1, 4, 10, 20, 39, 88, 228, 600, 1507, 3652, 8866, 22100, 56365, 144656, 369784, 942480, 2408934, 6196280, 16026652, 41571640, 107959654, 280708560, 731349400, 1910098320, 4999759830, 13109582376, 34421585844, 90500370760, 238272324682
Offset: 0

Views

Author

Seiichi Manyama, Oct 15 2023

Keywords

Crossrefs

Partial sums give A127902.

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-1, n-4*k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n-1,n-4*k) * binomial(4*k,k) / (3*k+1).

A367115 G.f. satisfies A(x) = 1 + 2*x*A(x) + 2*x^4*A(x)^4.

Original entry on oeis.org

1, 2, 4, 8, 18, 52, 184, 688, 2512, 8864, 30784, 107648, 384432, 1403872, 5205568, 19443328, 72817856, 273199488, 1027939072, 3883718144, 14741042464, 56189409088, 214931447680, 824443822848, 3169934397184, 12214858010112, 47168251137024
Offset: 0

Views

Author

Seiichi Manyama, Nov 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, 2^(n-3*k)*binomial(n, 4*k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} 2^(n-3*k) * binomial(n,4*k) * A002293(k).

A369159 Expansion of (1/x) * Series_Reversion( x / ((1+x)^3+x^4) ).

Original entry on oeis.org

1, 3, 12, 55, 274, 1443, 7905, 44593, 257305, 1511553, 9010170, 54361486, 331336454, 2037132958, 12619056108, 78682008194, 493427982703, 3110202012353, 19693920616872, 125214061831251, 799059649687239, 5116372686471627, 32860439054510610
Offset: 0

Views

Author

Seiichi Manyama, Jan 15 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^3+x^4))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+1, k)*binomial(3*n-3*k+3, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+1,k) * binomial(3*n-3*k+3,n-4*k).
Showing 1-10 of 14 results. Next