cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A001938 Expansion of k/(4*q^(1/2)) in powers of q, where k defined by sqrt(k) = theta_2(0, q)/theta_3(0, q).

Original entry on oeis.org

1, -4, 14, -40, 101, -236, 518, -1080, 2162, -4180, 7840, -14328, 25591, -44776, 76918, -129952, 216240, -354864, 574958, -920600, 1457946, -2285452, 3548550, -5460592, 8332425, -12614088, 18953310, -28276968, 41904208, -61702876, 90304598, -131399624
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
k^2 is the parameter and q the Jacobi nome of elliptic functions. See, e.g., Fricke, p. 11, eq. (8) with p. 10. eq. (1). - Wolfdieter Lang, Jul 04 2016

Examples

			G.f. = 1 - 4*x + 14*x^2 - 40*x^3 + 101*x^4 - 236*x^5 + 518*x^6 - 1080*x^7 + ...
G.f. of B(q) = q * A(q^2): q - 4*q^3 + 14*q^5 - 40*q^7 + 101*q^9 - 236*q^11 + 518*q^13 - 1080*q^15 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, 1935, Oxford University Press, p. 385.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ -x, x^2] QPochhammer[ x^2, x^4])^4, {x, 0, n}]; (* Michael Somos, Sep 24 2011 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^4] / QPochhammer[ -x])^4, {x, 0, n}]; (* Michael Somos, Sep 24 2011 *)
    a[ n_] := SeriesCoefficient[ (Product[ 1 - x^k, {k, 4, n, 4}] / Product[ 1 - (-x)^k, {k, n}])^4, {x, 0, n}]; (* Michael Somos, Sep 24 2011 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q^(1/2)] / (2 EllipticTheta[ 3, 0, q]))^4, {q, 0, n + 1/2}]; (* Michael Somos, Sep 24 2011 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q] / EllipticTheta[ 2, 0, q^(1/2)])^4, {q, 0, n + 1/2}]; (* Michael Somos, Sep 24 2011 *)
  • PARI
    {a(n) = my(A, A2, m); if( n<0, 0, n = 2*n + 1; A = x + O(x^3); m=2; while( mMichael Somos, Mar 26 2004 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^4, n))}; /* Michael Somos, Mar 26 2004 */

Formula

Expansion of (psi(x^2) / phi(x))^2 = (psi(x) / phi(x))^4 = (psi(x^2) / psi(x))^4 = (psi(-x) / psi(-x^2))^4 = (chi(-x) / chi(-x^2)^2)^4 = (chi(x)^2 * chi(-x))^-4 = (chi(x) * chi(-x^2))^-4 = (f(-x^4) / f(x))^4 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Feb 26 2012
G.f. A(x) satisfies 1 = (1 - 16 * x * A(x)^2) * (1 + 16 * x * A(-x)^2). - Michael Somos, Mar 26 2004
Expansion of q^(-1/2) * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^4 in powers of q.
Euler transform of period 4 sequence [ -4, 8, -4, 0, ...].
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v - (u * (1 + 4*v))^2. - Michael Somos, Mar 26 2004
G.f. A(q) satisfies A(q) = sqrt(A(q^2)) / (1 + 4*q*A(q^2)); together with limit_{n->infinity} A(x^n) = 1 this gives a fast algorithm to compute the series. - Joerg Arndt, Aug 06 2011
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 + x^(2*k - 1)))^4.
a(n) = (-1)^n * A093160(n). Convolution square of A079006.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 1/4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A139820. - Michael Somos, Jun 04 2015
G.f.: ((Sum_{n >= 0} x^(n*(n+1))) / (1 + Sum_{n >= 1} x^(n^2)))^4 (from the sum representation of the Jacobi theta functions evaluated at vanishing argument). - Wolfdieter Lang, Jul 04 2016
a(n) ~ (-1)^n * exp(sqrt(2*n)*Pi) / (32 * 2^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017

Extensions

Edited by N. J. A. Sloane, Mar 31 2007

A126662 Numbers k such that 2^(k(k-1)) == 8 (mod k).

Original entry on oeis.org

28, 292, 553, 5026, 7519, 20062, 50888, 57337, 126532, 337372, 518161, 555448, 757156, 811687, 849583, 1518076, 3623809, 4529623, 6752431, 6908068, 6909961, 7826888, 9568183, 13594936, 16113217, 20766748, 21596722, 28534984, 34462456
Offset: 1

Views

Author

Zak Seidov, Feb 10 2007

Keywords

Comments

Related to A127931.
Up to 10^9, there are 55 terms (21 odd and 34 even numbers). All except two, 50888 and 7826888, are congruent to 1 mod 3 and none are congruent to 0 mod 3. Is the sequence infinite?
Terms so far are == {1, 4, 7, 8, 10} (mod 12) or {1, 4, 7, 8, 13, 16, 19, 22, 28} (mod 30) and none are == +-3 (mod 8) nor == 5 (mod 10). - Robert G. Wilson v, Feb 12 2007

Crossrefs

Cf. A127931.

Programs

  • Mathematica
    lst = {}; n = 3; While[n < 10000000000, If[PowerMod[2, n(n - 1), n] == 8, AppendTo[lst, n]; Print@n]; n++ ]; lst (* Robert G. Wilson v, Feb 11 2007 *)
Showing 1-2 of 2 results.