cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A008441 Number of ways of writing n as the sum of 2 triangular numbers.

Original entry on oeis.org

1, 2, 1, 2, 2, 0, 3, 2, 0, 2, 2, 2, 1, 2, 0, 2, 4, 0, 2, 0, 1, 4, 2, 0, 2, 2, 0, 2, 2, 2, 1, 4, 0, 0, 2, 0, 4, 2, 2, 2, 0, 0, 3, 2, 0, 2, 4, 0, 2, 2, 0, 4, 0, 0, 0, 4, 3, 2, 2, 0, 2, 2, 0, 0, 2, 2, 4, 2, 0, 2, 2, 0, 3, 2, 0, 0, 4, 0, 2, 2, 0, 6, 0, 2, 2, 0, 0, 2, 2, 0, 1, 4, 2, 2, 4, 0, 0, 2, 0, 2, 2, 2, 2, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). The present sequence gives the expansion coefficients of psi(q)^2.
Also the number of positive odd solutions to equation x^2 + y^2 = 8*n + 2. - Seiichi Manyama, May 28 2017

Examples

			G.f. = 1 + 2*x + x^2 + 2*x^3 + 2*x^4 + 3*x^6 + 2*x^7 + 2*x^9 + 2*x^10 + 2*x^11 + ...
G.f. for B(q) = q * A(q^4) = q + 2*q^5 + q^9 + 2*q^13 + 2*q^17 + 3*q^25 + 2*q^29 + 2*q^37 + 2*q^41 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag. See p. 139 Example (iv).
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
  • R. W. Gosper, Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics, in Computers in Mathematics (Ed. D. V. Chudnovsky and R. D. Jenks). New York: Dekker, 1990. See p. 279.
  • R. W. Gosper, Experiments and discoveries in q-trigonometry, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Editors: F. G. Garvan and M. E. H. Ismail. Kluwer, Dordrecht, Netherlands, 2001, pp. 79-105. [See Pi_q.]
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916. See vol. 2, p 31, Article 272.
  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991, p. 165.

Crossrefs

Cf. A004020, A005883, A104794, A052343, A199015 (partial sums).
Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.
Cf. A274621 (reciprocal series).

Programs

  • Haskell
    a052343 = (flip div 2) . (+ 1) . a008441
    -- Reinhard Zumkeller, Jul 25 2014
    
  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 420); A[2]; /* Michael Somos, Jan 31 2015 */
  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A002654 := proc(n) sigmamr(n,4,1)-sigmamr(n,4,3) ; end proc:
    A008441 := proc(n) A002654(4*n+1) ; end proc:
    seq(A008441(n),n=0..90) ; # R. J. Mathar, Mar 23 2011
  • Mathematica
    Plus@@((-1)^(1/2 (Divisors[4#+1]-1)))& /@ Range[0, 104] (* Ant King, Dec 02 2010 *)
    a[ n_] := SeriesCoefficient[ (1/2) EllipticTheta[ 2, 0, q] EllipticTheta[ 3, 0, q], {q, 0, n + 1/4}]; (* Michael Somos, Jun 19 2012 *)
    a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 2, 0, q]^2, {q, 0, 2 n + 1/2}]; (* Michael Somos, Jun 19 2012 *)
    a[ n_] := If[ n < 0, 0, DivisorSum[ 4 n + 1, (-1)^Quotient[#, 2] &]];  (* Michael Somos, Jun 08 2014 *)
    QP = QPochhammer; s = QP[q^2]^4/QP[q]^2 + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
    TriangleQ[n_] := IntegerQ@Sqrt[8n +1]; Table[Count[FrobeniusSolve[{1, 1}, n], {?TriangleQ}], {n, 0, 104}] (* Robert G. Wilson v, Apr 15 2017 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( sum(k=0, (sqrtint(8*n + 1) - 1)\2, x^(k * (k+1)/2), x * O(x^n))^2, n) )};
    
  • PARI
    {a(n) = if( n<0, 0, n = 4*n + 1; sumdiv(n, d, (-1)^(d\2)))}; /* Michael Somos, Sep 02 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 / eta(x + A)^2, n))};
    
  • PARI
    {a(n) = if( n<0, 0, n = 4*n + 1; sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Sep 14 2005 */
    
  • PARI
    { my(q='q+O('q^166)); Vec(eta(q^2)^4 / eta(q)^2) } \\ Joerg Arndt, Apr 16 2017
    
  • Sage
    ModularForms( Gamma1(8), 1, prec=420).1; # Michael Somos, Jun 08 2014
    

Formula

This sequence is the quadrisection of many sequences. Here are two examples:
a(n) = A002654(4n+1), the difference between the number of divisors of 4*n+1 of form 4*k+1 and the number of form 4*k-1. - David Broadhurst, Oct 20 2002
a(n) = b(4*n + 1), where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 4). - Michael Somos, Sep 14 2005
G.f.: (Sum_{k>=0} x^((k^2 + k)/2))^2 = (Sum_{k>=0} x^(k^2 + k)) * (Sum_{k in Z} x^(k^2)).
Expansion of Jacobi theta (theta_2(0, sqrt(q)))^2 / (4 * q^(1/4)).
Sum[d|(4n+1), (-1)^((d-1)/2) ].
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 + 4 * v * w^2 - u^2 * w. - Michael Somos, Sep 14 2005
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1 * u3 - (u2 - u6) * (u2 + 3*u6). - Michael Somos, Sep 14 2005
Expansion of Jacobi k/(4*q^(1/2)) * (2/Pi)* K(k) in powers of q^2. - Michael Somos, Sep 14 2005. Convolution of A001938 and A004018. This appears in the denominator of the Jacobi sn and cn formula given in the Abramowitz-Stegun reference, p. 575, 16.23.1 and 16.23.2, where m=k^2. - Wolfdieter Lang, Jul 05 2016
G.f.: Sum_{k>=0} a(k) * x^(2*k) = Sum_{k>=0} x^k / (1 + x^(2*k + 1)).
G.f.: Sum_{k in Z} x^k / (1 - x^(4*k + 1)). - Michael Somos, Nov 03 2005
Expansion of psi(x)^2 = phi(x) * psi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions.
Moebius transform is period 8 sequence [ 1, -1, -1, 0, 1, 1, -1, 0, ...]. - Michael Somos, Jan 25 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 1/2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A104794.
Euler transform of period 2 sequence [ 2, -2, ...].
G.f.: q^(-1/4) * eta(q^2)^4 / eta(q)^2. See also the Fine reference.
a(n) = Sum_{k=0..n} A010054(k)*A010054(n-k). - Reinhard Zumkeller, Nov 03 2009
A004020(n) = 2 * a(n). A005883(n) = 4 * a(n).
Convolution square of A010054.
G.f.: Product_{k>0} (1 - x^(2*k))^2 / (1 - x^(2*k-1))^2.
a(2*n) = A113407(n). a(2*n + 1) = A053692(n). a(3*n) = A002175(n). a(3*n + 1) = 2 * A121444(n). a(9*n + 2) = a(n). a(9*n + 5) = a(9*n + 8) = 0. - Michael Somos, Jun 08 2014
G.f.: exp( Sum_{n>=1} 2*(x^n/n) / (1 + x^n) ). - Paul D. Hanna, Mar 01 2016
a(n) = A001826(2+8*n) - A001842(2+8*n), the difference between the number of divisors 1 (mod 4) and 3 (mod 4) of 2+8*n. See the Ono et al. link, Corollary 1, or directly the Niven et al. reference, p. 165, Corollary (3.23). - Wolfdieter Lang, Jan 11 2017
Expansion of continued fraction 1 / (1 - x^1 + x^1*(1 - x^1)^2 / (1 - x^3 + x^2*(1 - x^2)^2 / (1 - x^5 + x^3*(1 - x^3)^2 / ...))) in powers of x^2. - Michael Somos, Apr 20 2017
Given g.f. A(x), and B(x) is the g.f. for A079006, then B(x) = A(x^2) / A(x) and B(x) * B(x^2) * B(x^4) * ... = 1 / A(x). - Michael Somos, Apr 20 2017
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
From Paul D. Hanna, Aug 10 2019: (Start)
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^(2*n+1) - x^(2*k))^(n-k) = Sum_{n>=0} a(n)*x^(2*n).
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^(2*n+1) + x^(2*k))^(n-k) * (-1)^k = Sum_{n>=0} a(n)*x^(2*n). (End)
From Peter Bala, Jan 05 2021: (Start)
G.f.: Sum_{n = -oo..oo} x^(4*n^2+2*n) * (1 + x^(4*n+1))/(1 - x^(4*n+1)). See Agarwal, p. 285, equation 6.20 with i = j = 1 and mu = 4.
For prime p of the form 4*k + 3, a(n*p^2 + (p^2 - 1)/4) = a(n).
If n > 0 and p are coprime then a(n*p + (p^2 - 1)/4) = 0. The proofs are similar to those given for the corresponding results for A115110. Cf. A000729.
For prime p of the form 4*k + 1 and for n not congruent to (p - 1)/4 (mod p) we have a(n*p^2 + (p^2 - 1)/4) = 3*a(n) (since b(n), where b(4*n+1) = a(n), is multiplicative). (End)
From Peter Bala, Mar 22 2021: (Start)
G.f. A(q) satisfies:
A(q^2) = Sum_{n = -oo..oo} q^n/(1 - q^(4*n+2)) (set z = q, alpha = q^2, mu = 4 in Agarwal, equation 6.15).
A(q^2) = Sum_{n = -oo..oo} q^(2*n)/(1 - q^(4*n+1)) (set z = q^2, alpha = q, mu = 4 in Agarwal, equation 6.15).
A(q^2) = Sum_{n = -oo..oo} q^n/(1 + q^(2*n+1))^2 = Sum_{n = -oo..oo} q^(3*n+1)/(1 + q^(2*n+1))^2. (End)
G.f.: Sum_{k>=0} a(k) * q^k = Sum_{k>=0} (-1)^k * q^(k*(k+1)) + 2 * Sum_{n>=1, k>=0} (-1)^k * q^(k*(k+2*n+1)+n). - Mamuka Jibladze, May 17 2021
G.f.: Sum_{k>=0} a(k) * q^k = Sum_{k>=0} (-1)^k * q^(k*(k+1)) * (1 + q^(2*k+1))/(1 - q^(2*k+1)). - Mamuka Jibladze, Jun 06 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Oct 15 2022

Extensions

More terms and information from Michael Somos, Mar 23 2003

A079006 Expansion of q^(-1/4) * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^2 in powers of q.

Original entry on oeis.org

1, -2, 5, -10, 18, -32, 55, -90, 144, -226, 346, -522, 777, -1138, 1648, -2362, 3348, -4704, 6554, -9056, 12425, -16932, 22922, -30848, 41282, -54946, 72768, -95914, 125842, -164402, 213901, -277204, 357904, -460448, 590330, -754368, 960948, -1220370
Offset: 0

Views

Author

Michael Somos, Dec 22 2002

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The Lagrange series reversion of Sum_{n >= 1} a(n-1)*x^n is Sum_{n >= 1} A002103(n-1)*x^n. See the example in A002103. - Wolfdieter Lang, Jul 09 2016

Examples

			G.f. A(x) = 1 - 2*x + 5*x^2 - 10*x^3 + 18*x^4 - 32*x^5 + 55*x^6 - 90*x^7 + 144*x^8 + ...
G.f. B(q) = q * A(q^4) = q - 2*q^5 + 5*q^9 - 10*q^13 + 18*q^17 - 32*q^21 + 55*q^25 - 90*q^29 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[(1 + x^(k + 1)) / (1 + x^k), {k, 1, n, 2}]^2, {x, 0, n}]; (* Michael Somos, Jul 08 2011 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ[ q]}, SeriesCoefficient[ (m / 16 / q)^(1/4), {q, 0, n}]]; (* Michael Somos, Jul 08 2011 *)
    QP = QPochhammer; s = (QP[q]*(QP[q^4]^2/QP[q^2]^3))^2 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 23 2015 *)
    nmax = 50; CoefficientList[Series[Product[(1+x^(2*k))^4 / (1+x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^4]^2 / QPochhammer[ -x]^2, {x, 0, n}]; (* Michael Somos, Apr 19 2017 *)
  • PARI
    {a(n) = my(N, A); if( n<0, 0, N = (sqrtint(16*n + 1) + 1)\2; A = contfracpnqn( matrix(2, N, i, j, if( i==1, if( j<2, 1 + O(x^(N^2 + N)), (x^(j-1) + x^(3*j - 3))^2), 1 - x^(4*j - 2)))); polcoeff( A[2,1] / A[1,1], 4*n))}; /* Michael Somos, Sep 01 2005 */
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m = 1; while( m<=n, m*=2; A = subst(A, x, x^2); A = sqrt(A / (1 + 4 * x*A^2))); polcoeff(A, n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^2, n))};

Formula

a(n) = (2/n)*Sum_{k=1..n} (-1)^k*A046897(k)*a(n-k). - Vladeta Jovovic, Dec 24 2002
Expansion of q^(-1/4) * (1/2) * k^(1/2) in powers of q, where k^2 is the parameter and q the Jacobi nome of elliptic functions.
Expansion of (1/(2*q)) * (1 - sqrt(k')) / (1 + sqrt(k')) in powers of q^4, where k'^2 is the complementary parameter and q the Jacobi nome of elliptic functions. See the Fricke reference.
Expansion of psi(x^2) / phi(x) = psi(x)^2 / phi(x)^2 = psi(x^2)^2 / psi(x)^2 = psi(-x)^2 / phi(-x^2)^2 = chi(-x)^2 / chi(-x^2)^4 = 1 / (chi(x)^2 * chi(-x^2)^2) = 1 / (chi(x)^4 * chi(-x)^2) = f(-x^4)^2 / f(x)^2 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 4 sequence [-2, 4, -2, 0, ...].
G.f. A(x) satisfies A(x)^2 = A(x^2) / (1 + 4 * x * A(x^2)^2). - Michael Somos, Mar 19 2004
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 * (1 + 4 * v^2) - v. - Michael Somos, Jul 09 2005
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1*u3 * (u6 + u2)^2 - u2*u6. - Michael Somos, Jul 09 2005
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 + x^(2*k-1)))^2 = (Product_{k>0} (1 - x^(4*k)) / (1 - (-x)^k))^2.
Expansion of continued fraction 1 / (1 - x^2 + (x^1 + x^3)^2 / (1 - x^6 + (x^2 + x^6)^2 / (1 - x^10 + (x^3 + x^9)^2 / ...))) in powers of x^4. - Michael Somos, Sep 01 2005
Given g.f. A(x), then B(q) = 2 * q * A(q^4) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (1 - u^4) * (1 - v^4) - (1 - u*v)^4 . - Michael Somos, Jan 01 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A189925.
Convolution inverse of A029839. Convolution square of A083365. a(n) = (-1)^n * A001936(n).
G.f.: 1/Q(0), where Q(k)= 1 - x^(k+1/2) + (x^((k+1)/4) + x^((3*k+3)/4))^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 02 2013
a(n) ~ (-1)^n * exp(Pi*sqrt(n)) / (2^(7/2)*n^(3/4)). - Vaclav Kotesovec, Jul 04 2016
Given g.f. A(x), and B(x) is the g.f. for A008441, then A(x) = B(x^2) / B(x) and A(x) * A(x^2) * A(x^4) * ... = 1 / B(x). - Michael Somos, Apr 20 2017
Expansion of continued fraction 1 / (1 - x^1 + x^1*(1 + x^1)^2 / (1 - x^3 + x^2*(1 + x^2)^2 / (1 - x^5 + x^3*(1 + x^3)^2 / ...))) in powers of x^2. - Michael Somos, Apr 20 2017
a(n) = A208933(4*n+1) - A215348(4*n+1) (conjectured). - Thomas Baruchel, May 14 2018
A(x^4) = (1/(m*x)) * ( chi(x)^m - chi(-x)^m ) / ( chi(x)^m + chi(-x)^m ) at m = 2, where chi(x) = Product_{i >= 0} (1 + x^(2*i+1)) is the g.f. of A000700. The formula gives generating functions related to A092869 when m = 1 and A001938 (also A093160) when m = 4. - Peter Bala, Sep 23 2023

A007096 Expansion of theta_3 / theta_4.

Original entry on oeis.org

1, 4, 8, 16, 32, 56, 96, 160, 256, 404, 624, 944, 1408, 2072, 3008, 4320, 6144, 8648, 12072, 16720, 22976, 31360, 42528, 57312, 76800, 102364, 135728, 179104, 235264, 307672, 400704, 519808, 671744, 864960, 1109904, 1419456, 1809568, 2299832
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of partitions of 2n into parts with 2 types c, c* of each part. The even parts appears with multiplicity 1 for each type. The odd parts appears with multiplicity 2 (cc or c*c* but not cc*, that is, no mixing is allowed). E.g., a(4)=8 because of 44*, 22*, 211, 21*1*, 2*1*1*, 2*11, 111*1*. - Noureddine Chair, Jan 27 2005
a(n) is the number of pairs of overpartitions into odd parts where the sum of all parts is equal to n. - Jeremy Lovejoy, Aug 29 2020

Examples

			G.f. = 1 + 4*q + 8*q^2 + 16*q^3 + 32*q^4 + 56*q^5 + 96*q^6 + 160*q^7 + 256*q^8 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Self-convolution of A080054. - Vladeta Jovovic, Mar 22 2005

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] / EllipticTheta[ 4, 0, q], {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m)^(-1/4), {q, 0, n}]]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[( QPochhammer[ -q, q^2] / QPochhammer[ q, q^2])^2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ (Product[ 1 - (-q)^k, {k, n}] / Product[ 1 - q^k, {k, n}])^2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^2, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *)
  • PARI
    {a(n) = my(A, B); if( n<0, 0, A = 1 + 4*x; for( k=2, n, B = A + x^2 * O(x^k); A += Pol(2 * subst(B, x, x^2)^2 - B - 1/B) / x / 8); polcoeff(A, n))}; /* Michael Somos, Jul 07 2005*/
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)))^2, n))}; /* Michael Somos, Jan 01 2006 */

Formula

Euler transform of period 4 sequence [4, -2, 4, 0, ...]. - Vladeta Jovovic, Mar 22 2005
Expansion of eta(q^2)^6 /(eta(q)^4 * eta(q^4)^2) in powers of q.
Expansion of phi(q) / phi(-q) = chi(q)^2 / chi(-q)^2 = psi(q)^2 / psi(-q)^2 = phi(-q^2)^2 / phi(-q)^2 = phi(q)^2 / phi(-q^2)^2 = chi(-q^2)^2 / chi(-q)^4 = chi(q)^4 / chi(-q^2)^2 = f(q)^2 / f(-q)^2 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (1 - u^4) * (1 - v^4) - (1 - u*v)^4. - Michael Somos, Jan 01 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A028939.
Expansion of Jacobian elliptic function 1 / sqrt(k') in powers of q. - see Fine.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = 1 + u^2 - 2*u*v^2. - Michael Somos, Jul 07 2005
Unique solution to f(x^2)^2 = (f(x) + 1 / f(x)) / 2 and f(0)=1, f'(0) nonzero.
G.f.: theta_3 / theta_4 = (Sum_{k} x^k^2) / (Sum_{k} (-x)^k^2) = (Product_{k>0} (1 - x^(4*k - 2)) / ((1 - x^(4*k - 1)) * (1 - x^(4*k - 3)))^2)^2.
A097243(n) = a(4*n). 8*A022577(n) = a(4*n + 2). a(n) = 4*A123655(n) if n>0. Convolution square of A080054.
Empirical: sum(exp(-Pi)^(n-1)*a(n),n=1..infinity) = 2^(1/4). - Simon Plouffe, Feb 20 2011
Empirical : sum(exp(-Pi*sqrt(2))^(n-1)*(-1)^(n+1)*a(n),n=1..infinity) = (-2+2*2^(1/2))^(1/4). - Simon Plouffe, Feb 20 2011
Empirical : sum(exp(-2*Pi)^(n-1)*a(n),n=1..infinity) = 1/2*(8+6*2^(1/2))^(1/4). - Simon Plouffe, Feb 20 2011
a(n) ~ exp(Pi*sqrt(n)) / (4*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Aug 28 2015
G.f.: exp(4*Sum_{k>=1} sigma(2*k - 1)*x^(2*k-1)/(2*k - 1)). - Ilya Gutkovskiy, Apr 19 2019

A083365 Expansion of psi(x) / phi(x) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 2, -3, 4, -6, 9, -12, 16, -22, 29, -38, 50, -64, 82, -105, 132, -166, 208, -258, 320, -395, 484, -592, 722, -876, 1060, -1280, 1539, -1846, 2210, -2636, 3138, -3728, 4416, -5222, 6163, -7256, 8528, -10006, 11716, -13696, 15986, -18624, 21666, -25169, 29190, -33808, 39104
Offset: 0

Views

Author

Michael Somos, Apr 24 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square is A079006.
Convolution inverse is A029838.

Examples

			G.f. = 1 - x + 2*x^2 - 3*x^3 + 4*x^4 - 6*x^5 + 9*x^6 - 12*x^7 + 16*x^8 - 22*x^9 + ...
G.f. = q - q^9 + 2*q^17 - 3*q^25 + 4*q^33 - 6*q^41 + 9*q^49 - 12*q^57 + 16*q^65 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 221 Entry 1(i).
  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • H. T. Davis, Introduction to nonlinear differential and integral equations, Dover Publications, Inc., New York 1962, p. 170 MR0181773 (31 #6000)

Crossrefs

(psi(x) / phi(x))^b: this sequence (b=1), A079006 (b=2), A187053 (b=3), A001938 (b=4), A195861 (b=5), A320049 (b=6), A320050 (b=7).

Programs

  • Mathematica
    phi[x_] := EllipticTheta[3, 0, x]; psi[x_] := (1/2)*x^(-1/8)*EllipticTheta[2, 0, x^(1/2)]; s = Series[ psi[x]/phi[x], {x, 0, 100}]; A083365 = CoefficientList[s, x] (* Jean-François Alcover, Feb 18 2015 *)
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k))^2/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)
    (QPochhammer[-x^2, x^2, -1/2] + O[x]^50)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2, x^2] / QPochhammer[ -x, x^2], {x, 0, n}]; (* Michael Somos, Oct 10 2019~ *)
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A = sqrt(A / (1 + 4 * x * A^2))); polcoeff(sqrt(A), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = contfracpnqn( matrix(2, (sqrtint(8*n + 1) + 1)\2, i, j, if( i==1, x^(j-1), 1 + if( j>1, x^(j-1))))); polcoeff(A[2,1] / A[1,1] + x * O(x^n), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3, n))};

Formula

Expansion of f(-x^4) / f(x) = psi(x) / phi(x) = psi(x^2) / psi(x) = psi(-x) / phi(-x^2) = 1 / (chi(x) * chi(-x^2)) = 1 / (chi^2(x) * chi(-x)) = chi(-x) / chi^2(-x^2) = (psi(x^2) / phi(x))^(1/2) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of k^(1/4) / (2^(1/2) * q^(1/8)) in powers of q where k is elliptic modulus and q is the nome.
Expansion of q^(-1/8) * eta(q) * eta(q^4)^2 / eta(q^2)^3 in powers of q.
Given g.f. A(x), then B(q) = q * A(q^8) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v^2 - u^4 * (1 + 4*v^4).
Given g.f. A(x), then B(q) = q * A(q^8) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = v^4 - u^4 + u*v + 4*(u*v)^3.
Given g.f. A(x), then B(q) = q * A(q^8) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = w - u^2*v*(1 + 2*w^2). - Michael Somos, May 29 2005
Given g.f. A(x), then B(q) = q * A(q^8) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u2*u6 - u1*u3 * (u2^2 + u6^2). - Michael Somos, May 29 2005
Given g.f. A(x), then B(q) = sqrt(2) * q * A(q^8) satisfies 0 = f(B(q), B(q^7)) where f(u, v) = (1 - u^8) * (1 - v^8) - (1 - u*v)^8. - Michael Somos, Jan 01 2006
Euler transform of period 4 sequence [-1, 2, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(-1/2) * g(t) where q = exp(2 Pi i t) and g() is the g.f. for A108494. - Michael Somos, Feb 29 2012
G.f.: Product_{k>0} (1 + x^(2*k)) / (1 + x^(2*k - 1)) = (Sum_{k>0} x^(k^2 - k)) / (Sum_{k>0} x^((k^2 - k)/2)).
G.f.: 1 / (1 + x / (1 + x + x^2 / (1 + x^2 + x^3 / (1 + x^3 + ...)))).
A001935(n) = (-1)^n a(n).
G.f.: (1+1/Q(0))/2, where Q(k)= 1 + x^(k+1) + x^(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 30 2013
a(n) ~ (-1)^n * exp(Pi*sqrt(n/2))/(2^(11/4)*n^(3/4)). - Vaclav Kotesovec, Jul 04 2016
G.f.: (-x^2; x^2){-1/2} = ((-1; x^2){1/2})/2, where (a; q)n is the q-Pochhammer symbol. - _Vladimir Reshetnikov, Nov 20 2016
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A109506(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 14 2017
a(n) ~ (-1)^n * exp(Pi*sqrt(n/2)) / (2^(11/4) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
G.f.: exp(Sum_{k>=1} (-1)^k*x^k/(k*(1 + x^k))). - Ilya Gutkovskiy, May 28 2018

A093160 Expansion of q^(-1/2) * (eta(q^4) / eta(q))^4 in powers of q.

Original entry on oeis.org

1, 4, 14, 40, 101, 236, 518, 1080, 2162, 4180, 7840, 14328, 25591, 44776, 76918, 129952, 216240, 354864, 574958, 920600, 1457946, 2285452, 3548550, 5460592, 8332425, 12614088, 18953310, 28276968, 41904208, 61702876, 90304598
Offset: 0

Views

Author

Michael Somos, Mar 26 2004, Apr 17 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*x + 14*x^2 + 40*x^3 + 101*x^4 + 236*x^5 + 518*x^6 + 1080*x^7 + ...
G.f. = q + 4*q^3 + 14*q^5 + 40*q^7 + 101*q^9 + 236*q^11 + 518*q^13 + ...
		

References

  • A. Cayley, An Elementary Treatise on Elliptic Functions, 2nd ed, 1895, p. 381, Section 488.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (Product[ 1 + x^k, {k, 2, n, 2}] / Product[ 1 - x^k, {k, 1, n, 2}])^4, {x, 0, n}];
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ Sqrt[m] / (4 Sqrt[1 - m]), {q, 0, n + 1/2}]];
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ m^(1/4) / (2 (1 - Sqrt @ m)), {q, 0, n/2 + 1/4 }]];
    s = (QPochhammer[q^4]/QPochhammer[q])^4 + O[q]^30; CoefficientList[s, q] (* Jean-François Alcover, Nov 24 2015 *)
  • PARI
    {a(n) = my(A, A2, m); if( n<0, 0, A = x + O(x^2); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A2 = A * (1 + 16*A); A = 8*A2 + (1 + 32*A) * sqrt(A2)); polcoeff( sqrt(A/x), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A) / eta(x + A))^4, n))};

Formula

G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k - 1)))^4.
Expansion of q^(-1/2) * k / (4 * k') in powers of q where q is Jacobi's nome and k is the elliptic modulus.
Expansion of q^(-1/4) * k^(1/2) / (2 * (1 - k)) in powers of q^(1/2) where q is Jacobi's nome and k is the elliptic modulus.
Expansion of (psi(x^2) / phi(-x))^2 = (psi(x) / phi(-x^2))^4 = (psi(-x) / phi(-x))^4 = (psi(x^2) / psi(-x))^4 = (chi(x) / chi(-x^2)^2)^4 = ( chi(x) * chi(-x)^2)^-4 = (chi(-x) * chi(-x^2))^-4 = (f(-x^4) / f(-x))^4 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 4 sequence [ 4, 4, 4, 0, ...].
Given g.f. A(x), then B(x) = q * A(q^2) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 - v - 16*u*v - 16*v^2 - 256*u*v^2.
G.f. A(q) satisfies A(q) = sqrt(A(-q^2)) / (1 - 4*q*A(-q^2)); together with limit_{n->infinity} A(x^n) = 1 this gives a fast algorithm to compute the series. [Joerg Arndt, Aug 06 2011]
A001938(n) = (-1)^n * a(n). Convolution inverse of A112143.
a(n) ~ exp(sqrt(2*n)*Pi) / (32 * 2^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
a(0) = 1, a(n) = (4/n)*Sum_{k=1..n} A046897(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 28 2017

A029841 McKay-Thompson series of class 8E for the Monster group.

Original entry on oeis.org

1, 4, 2, -8, -1, 20, -2, -40, 3, 72, 2, -128, -4, 220, -4, -360, 5, 576, 8, -904, -8, 1384, -10, -2088, 11, 3108, 12, -4552, -15, 6592, -18, -9448, 22, 13392, 26, -18816, -29, 26216, -34, -36224, 38, 49700, 42, -67728, -51, 91688
Offset: 0

Views

Author

Keywords

Comments

A Hauptmodul for Gamma'_0(8).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*x + 2*x^2 - 8*x^3 - x^4 + 20*x^5 - 2*x^6 - 40*x^7 + 3*x^8 + ...
T8E = 1/q + 4*q + 2*q^3 - 8*q^5 - q^7 + 20*q^9 - 2*q^11 - 40*q^13 + 3*x^15 + ...
		

References

  • A. Cayley, An Elementary Treatise on Elliptic Functions, 2nd ed, 1895, p. 380, Section 488.

Crossrefs

Programs

  • Mathematica
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ 4 / Sqrt[m], {q, 0, n - 1/2}]]; (* Michael Somos, Aug 01 2011 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ 2 (1 + Sqrt[m]) / m^(1/4), {q, 0, n/2 - 1/4}]]; (* Michael Somos, Aug 01 2011 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^3 / (QPochhammer[ x] QPochhammer[x^4]^2))^4, {x, 0, n}]; (* Michael Somos, Aug 20 2014 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A) * eta(x^4 + A))^2)^4, n))};
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A = (4*x + A) / sqrt(A)); polcoeff(A, n))};

Formula

G.f.: ( Product_{k>0} (1 + q^(2*k - 1)) / (1 + q^(2*k)) )^4.
Expansion of q^(1/4) * (1 + k) / k^(1/2) in powers of q^(1/2) where q is Jacobi's nome and k is the elliptic modulus. - Michael Somos, Aug 01 2011
Expansion of q^(1/2) * 4 / k in powers of q where q is Jacobi's nome and k is the elliptic modulus. - Michael Somos, Aug 01 2011 and Feb 28 2012
Expansion of (phi(x) / psi(x))^4 in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(1/2) * (eta(q^2)^3 / (eta(q) * eta(q^4)^2))^4 in powers of q. - Michael Somos, Aug 01 2011
Euler transform of period 4 sequence [4, -8, 4, 0, ...]. - Michael Somos, Mar 18 2004
Given g.f. A(x), then B(q) = A(q^2) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = 16 + 8*v + v^2 - u^2*v. - Michael Somos, Mar 18 2004
G.f. A(q) satisfies A(q) = sqrt(A(q^2))+4*q/sqrt(A(q^2)). - Joerg Arndt, Aug 06 2011
A112143(n) = (-1)^n * a(n). a(2*n) = A029839(n). a(2*n + 1) = 4 * A079006(n). - Michael Somos, Mar 27 2004.
Convolution inverse of A001938. Convolution square of A029839. Convolution square is A029845.

A001937 Expansion of (psi(x^2) / psi(-x))^3 in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 9, 22, 48, 99, 194, 363, 657, 1155, 1977, 3312, 5443, 8787, 13968, 21894, 33873, 51795, 78345, 117312, 174033, 255945, 373353, 540486, 776848, 1109040, 1573209, 2218198, 3109713, 4335840, 6014123, 8300811, 11402928, 15593702, 21232521, 28790667, 38884082
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The Cayley reference is actually to A187053. - Michael Somos, Jul 26 2012

Examples

			1 + 3*x + 9*x^2 + 22*x^3 + 48*x^4 + 99*x^5 + 194*x^6 + 363*x^7 + 657*x^8 + ...
q^3 + 3*q^11 + 9*q^19 + 22*q^27 + 48*q^35 + 99*q^43 + 194*q^51 + 363*q^59 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    g100:= mul((1+x^(2*k))/(1-x^(2*k-1)),k=1..50)^3:
    S:= series(g100,x,101):
    seq(coeff(S,x,j),j=0..100); # Robert Israel, Nov 30 2015
  • Mathematica
    CoefficientList[ Series[Product[(1 - x^k)^(-3*Boole[Mod[k, 4] != 0]), {k, 1, 101}], {x, 0, 100}], x] (* Olivier GERARD, May 06 2009 *)
    QP = QPochhammer; s = (QP[q^4]/QP[q])^3 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A) / eta(x + A))^3, n))} /* Michael Somos, Mar 06 2011 */

Formula

Expansion of q^(-3/8) * (eta(q^4) / eta(q))^3 in powers of q. - Michael Somos, Jul 26 2012
Euler transform of period 4 sequence [ 3, 3, 3, 0, ...]. - Michael Somos, Mar 06 2011
Convolution cube of A001935. A187053(n) = (-1)^n * a(n). - Michael Somos, Mar 06 2011
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k-1)))^3.
a(n) ~ 3^(1/4) * exp(sqrt(3*n/2)*Pi) / (16*2^(3/4)*n^(3/4)). - Vaclav Kotesovec, Nov 15 2017

Extensions

Corrected and extended by Simon Plouffe
Checked and more terms from Olivier GERARD, May 06 2009

A005798 Expansion of (theta_2(q)/theta_3(q))^4/16 in powers of q.

Original entry on oeis.org

0, 1, -8, 44, -192, 718, -2400, 7352, -20992, 56549, -145008, 356388, -844032, 1934534, -4306368, 9337704, -19771392, 40965362, -83207976, 165944732, -325393024, 628092832, -1194744096, 2241688744, -4152367104, 7599231223, -13749863984
Offset: 0

Views

Author

Keywords

Comments

When multiplied by 16, this is the q-expansion of the automorphic function lambda (see A115977) [see Erdelyi].
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 8*q^2 + 44*q^3 - 192*q^4 + 718*q^5 - 2400*q^6 + 7352*q^7 - 20992*q^8 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 591.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 121.
  • A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 23, Eq. (37).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

If initial 0 is omitted and sequence begins with a(0) = 1, then this is the convolution of A001938 with itself. G.f.s are related by a(x)=x*A001938(x)^2. Reversion of A005797.

Programs

  • Maple
    with (numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add (add (d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: aa:=etr (n-> [ -8,16,-8,0] [modp(n-1,4)+1]): a:= n->aa(n-1): seq (a(n), n=0..26);  # Alois P. Heinz, Sep 08 2008
  • Mathematica
    a[ n_] := SeriesCoefficient[ InverseEllipticNomeQ[ x] / 16, {x, 0, n}]; (* Michael Somos, Jun 13 2011 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q] / EllipticTheta[ 2, 0, q^(1/2)])^8, {q, 0, n}]; (* Michael Somos, May 10 2014 *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^4] / QPochhammer[ -q])^8, {q, 0, n}]; (* Michael Somos, May 10 2014 *)
    a[ n_] := SeriesCoefficient[ q (Product[ 1 - q^k, {k, 4, n - 1, 4}] / Product[ 1 - (-q)^k, {k, n - 1}])^8, {q, 0, n}]; (* Michael Somos, May 10 2014 *)
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; aa = etr[Function[{n}, {-8, 16, -8, 0}[[Mod[n-1, 4]+1]]]]; a[n_] := aa[n-1]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
  • PARI
    {a(n) = my(A, m); if( n<1, 0, m=1; A = x + O(x^2); while( m
    				
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^8, n))}; /* Michael Somos, Jul 16 2005 */

Formula

Expansion of elliptic lambda / 16 = m / 16 = (k / 4)^2 in powers of the nome q.
Expansion of q * (psi(q) / phi(q))^8 = q * (psi(q^2) / psi(q))^8 = q * (psi(-q) / phi(-q^2))^8 = q * (chi(-q) / chi(-q^2)^2)^8 = q / (chi(q) * chi(-q^2))^8 = q / (chi(-q) * chi(q)^2)^8 = q * (psi(q^2) / phi(q))^4 = q * (f(-q^4) / f(q))^8 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Jun 13 2011
Expansion of eta(q)^8 * eta(q^4)^16 / eta(q^2)^24 in powers of q.
Euler transform of period 4 sequence [-8, 16, -8, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v + 16*u*v - 32*u^2*v + 256*(u*v)^2. - Michael Somos, Mar 19 2004
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = (1 / 16) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128692. - Michael Somos, May 10 2014
G.f.: q * Product( (1 + q^(2*n)) / (1 + q^(2*n - 1)), n=1..inf )^8.
a(n) ~ (-1)^(n+1) * exp(2*Pi*sqrt(n))/(512*n^(3/4)). - Vaclav Kotesovec, Jul 10 2016
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 17/16 - 3*sqrt(2)/4, verified to 27000 digits (10000 terms). - Simon Plouffe, Mar 01 2021

Extensions

Definition simplified by N. J. A. Sloane, Sep 25 2011

A121613 Expansion of psi(-x)^4 in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -4, 6, -8, 13, -12, 14, -24, 18, -20, 32, -24, 31, -40, 30, -32, 48, -48, 38, -56, 42, -44, 78, -48, 57, -72, 54, -72, 80, -60, 62, -104, 84, -68, 96, -72, 74, -124, 96, -80, 121, -84, 108, -120, 90, -112, 128, -120, 98, -156, 102, -104, 192, -108, 110
Offset: 0

Views

Author

Michael Somos, Aug 10 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 33 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 - 4*x + 6*x^2 - 8*x^3 + 13*x^4 - 12*x^5 + 14*x^6 - 24*x^7 + ...
G.f. = q - 4*q^3 + 6*q^5 - 8*q^7 + 13*q^9 - 12*q^11 + 14*q^13 - 24*q^15 + ...
		

References

  • J. W. L. Glaisher, Notes on Certain Formulae in Jacobi's Fundamenta Nova, Messenger of Mathematics, 5 (1876), pp. 174-179. see p.179
  • Hardy, et al., Collected Papers of Srinivasa Ramanujan, p. 326, Question 359.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(16), 2), 110); A[2] - 4*A[4]; /* Michael Somos, Jun 10 2015 */
  • Mathematica
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ Sqrt[(1 - m) m ] (EllipticK[m] 2/Pi)^2 / (4 q^(1/2)), {q, 0, n}]]; (* Michael Somos, Jun 22 2012 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q] QPochhammer[ q^4] / QPochhammer[ q^2])^4, {q, 0, n}]; (* Michael Somos, Oct 14 2013 *)
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSigma[1, 2 n + 1]]; (* Michael Somos, Jun 15 2015 *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sigma(2*n + 1))};
    
  • Sage
    A = ModularForms( Gamma0(16), 2, prec=110).basis(); A[1] - 4*A[3]; # Michael Somos, Jun 27 2013
    

Formula

Expansion of q^(-1/2) * (eta(q) * eta(q^4) / eta(q^2))^4 in powers of q.
Expansion of q^(-1/2)/4 * k * k' * (K / (Pi/2))^2 in powers of q where k, k', K are Jacobi elliptic functions. - Michael Somos, Jun 22 2012
Euler transform of period 4 sequence [ -4, 0, -4, -4, ...].
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^n, b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1 (mod 4), b(p^e) = (-1)^e * (p^(e+1) - 1) / (p - 1) if p == 3 (mod 4).
Given g.f. A(x), then B(x) = 4 * Integral_{0..x} A(x^2) dx = arcsin(4 * x * A001938(x^2)) satisfies 0 = f(B(x), B(x^3)) where f(u, v) = sin(u + v) / 2 - sin((u - v) / 2). - Michael Somos, Oct 14 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 27 2013
G.f.: (Product_{k>0} (1 - x^k) / (1 - x^(4*k - 2)))^4.
G.f.: Sum_{k>0} -(-1)^k * (2*k - 1) * x^(k - 1) / (1 + x^(2*k - 1)).
G.f.: (Product_{k>0} (1 - x^(2*k - 1)) * (1 - x^(4*k)))^4.
G.f.: (Sum_{k>0} (-1)^floor(k/2) * x^((k^2 - k)/2))^4.
G.f.: Sum_{k>0} (-1)^k * (2*k - 1) * x^(2*k - 1) / (1 + x^(4*k - 2)).
a(n) = (-1)^n * A008438(n). a(2*n) = A112610(n). a(2*n + 1) = -4 * A097723(n).
Convolution square of A134343. - Michael Somos, Jun 20 2012
a(3*n + 2) = 6 * A258831(n). a(4*n + 3) = -8 * A258835(n). - Michael Somos, Jun 11 2015

A127391 Series expansion of the elliptic function sqrt(k) = theta_2/theta_3 in powers of q^(1/4).

Original entry on oeis.org

0, 2, 0, 0, 0, -4, 0, 0, 0, 10, 0, 0, 0, -20, 0, 0, 0, 36, 0, 0, 0, -64, 0, 0, 0, 110, 0, 0, 0, -180, 0, 0, 0, 288, 0, 0, 0, -452, 0, 0, 0, 692, 0, 0, 0, -1044, 0, 0, 0, 1554, 0, 0, 0, -2276, 0, 0, 0, 3296, 0, 0, 0, -4724, 0, 0, 0, 6696, 0, 0, 0, -9408, 0, 0, 0, 13108, 0, 0, 0, -18112, 0, 0, 0, 24850, 0
Offset: 0

Views

Author

N. J. A. Sloane, Mar 31 2007

Keywords

Comments

It appears that a(n) = 2 * A208933(n) - A212318(n) for n>0. - Thomas Baruchel, May 14 2018
Empirical: Sum_{n>=1} a(n)/exp(Pi*(n-1)) = 3 + 2*sqrt(2) - 2*sqrt(4 + 3*sqrt(2)). - Simon Plouffe, Mar 01 2021

Examples

			2*x - 4*x^5 + 10*x^9 - 20*x^13 + 36*x^17 - 64*x^21 + 110*x^25 -180*x^29 + ...
2*q^(1/4) - 4*q^(5/4) + 10*q^(9/4) - 20*q^(13/4) + 36*q^(17/4) - 64*q^(21/4) + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).

Crossrefs

See A127392 for another version. Dividing by 2 gives A079006. Cf. A001936, A001938.
Showing 1-10 of 21 results. Next