cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A001935 Number of partitions with no even part repeated; partitions of n in which no parts are multiples of 4.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 16, 22, 29, 38, 50, 64, 82, 105, 132, 166, 208, 258, 320, 395, 484, 592, 722, 876, 1060, 1280, 1539, 1846, 2210, 2636, 3138, 3728, 4416, 5222, 6163, 7256, 8528, 10006, 11716, 13696, 15986, 18624, 21666, 25169, 29190, 33808, 39104, 45164
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n where no part appears more than three times.
a(n) satisfies Euler's pentagonal number (A001318) theorem, unless n is in A062717 (see Fink et al.).
Also number of partitions of n in which the least part and the differences between consecutive parts is at most 3. Example: a(5)=6 because we have [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1] and [1,1,1,1,1]. - Emeric Deutsch, Apr 19 2006
Equals A000009 convolved with its aerated variant, = polcoeff A000009 * A000041 * A010054 (with alternate signs). - Gary W. Adamson, Mar 16 2010
Equals left border of triangle A174715. - Gary W. Adamson, Mar 27 2010
The Cayley reference is actually to A083365. - Michael Somos, Feb 24 2011
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution of A000009 and A035457. - Vaclav Kotesovec, Aug 23 2015
Convolution inverse is A082303. - Michael Somos, Sep 30 2017
The g.f. in the form Sum_{n >= 0} x^(n*(n+1)/2) * Product_{k = 1..n} (1+x^k)/(1-x^k) = Sum_{n >= 0} x^(n*(n+1)/2) * Product_{k = 1..n} (1+x^k)/(1+x^k-2*x^k) == Sum_{n >= 0} x^(n*(n+1)/2) (mod 2). It follows that a(n) is odd iff n = k*(k + 1)/2 for some nonnegative integer k. Cf. A333374. - Peter Bala, Jan 08 2025

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 16*x^8 + 22*x^9 + ...
G.f. = q + q^9 + 2*q^17 + 3*q^25 + 4*q^33 + 6*q^41 + 9*q^49 + 12*q^57 + 16*q^65 + 22*q^73 + ...
a(5)=6 because we have [5], [4,1], [3,2], [3,1,1], [2,1,1,1] and [1,1,1,1,1].
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.5.2).
  • M. D. Hirschhorn, The Power of q, Springer, 2017. See ped page 303ff.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 241.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041, A010054. - Gary W. Adamson, Mar 16 2010
Cf. A174715. - Gary W. Adamson, Mar 27 2010
Cf. A082303.
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Haskell
    a001935 = p a042968_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Sep 02 2012
  • Maple
    g:=product((1+x^j)*(1+x^(2*j)),j=1..50): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=0..48); # Emeric Deutsch, Apr 19 2006
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
         `if`(irem(d, 4)=0, 0, d), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 24 2015
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q] / EllipticTheta[ 2, Pi/4, q^(1/2)] / (16 q)^(1/8), {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 4, n, 4}] / Product[ 1 - x^k, {k, n}], {x, 0, n}]; (* Michael Somos, Jul 08 2011 *)
    CoefficientList[Series[Product[1+x^j+x^(2j)+x^(3j), {j,1,48}], {x,0,48}],x] (* Jean-François Alcover, May 26 2011, after Jon Perry *)
    QP = QPochhammer; CoefficientList[QP[q^4]/QP[q] + O[q]^50, q] (* Jean-François Alcover, Nov 24 2015 *)
    a[0] = 1; a[n_] := a[n] = Sum[a[n-j] DivisorSum[j, If[Divisible[#, 4], 0, #]&], {j, 1, n}]/n; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 4], 0, 2] ], {n, 0, 49}] (* Robert Price, Jul 28 2020 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x^4 + x * O(x^n)) / eta(x + x * O(x^n)), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint( 8*n + 1) - 1)\2, prod(i=1, k, (1 + x^i) / (x^-i - 1), 1 + x * O(x^n))), n))}; /* Michael Somos, Jun 01 2004 */
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/(1+(-x)^m+x*O(x^n))/m)),n)} \\ Paul D. Hanna, Jul 24 2013
    

Formula

Euler transform of period 4 sequence [ 1, 1, 1, 0, ...].
Expansion of q^(-1/8) * eta(q^4) / eta(q) in powers of q. - Michael Somos, Mar 19 2004
Expansion of psi(-x) / phi(-x) = psi(x) / phi(-x^2) = psi(x^2) / psi(-x) = chi(x) / chi(-x^2)^2 = 1 / (chi(x) * chi(-x)^2) = 1 / (chi(-x) * chi(-x^2)) = f(-x^4) / f(-x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Jul 08 2011
G.f.: Product(j>=1, 1 + x^j + x^(2*j) + x^(3*j)). - Jon Perry, Mar 30 2004
G.f.: Product_{k>=1} (1+x^k)^(2-k%2). - Jon Perry, May 05 2005
G.f.: Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k-1)) = 1 + Sum_{k>0}(Product_{i=1..k} (x^i + 1) / (x^-i - 1)).
G.f.: Sum_{n>=0} ( x^(n*(n+1)/2) * Product_{k=1..n} (1+x^k)/(1-x^k) ). - Joerg Arndt, Apr 07 2011
G.f.: P(x^4)/P(x) where P(x) = Product_{k>=1} 1-x^k. - Joerg Arndt, Jun 21 2011
A083365(n) = (-1)^n a(n). Convolution square is A001936. a(n) = A098491(n) + A098492(n). a(2*n) = A081055(n). a(2*n + 1) = A081056(n).
G.f.: (1+ 1/G(0))/2, where G(k) = 1 - x^(2*k+1) - x^(2*k+1)/(1 + x^(2*k+2) + x^(2*k+2)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jul 03 2013
G.f.: exp( Sum_{n>=1} (x^n/n) / (1 + (-x)^n) ). - Paul D. Hanna, Jul 24 2013
a(n) ~ Pi * BesselI(1, sqrt(8*n + 1)*Pi/4) / (2*sqrt(8*n + 1)) ~ exp(Pi*sqrt(n/2)) / (4 * (2*n)^(3/4)) * (1 + (Pi/(16*sqrt(2)) - 3/(4*Pi*sqrt(2))) / sqrt(n) + (Pi^2/1024 - 15/(64*Pi^2) - 15/128) / n). - Vaclav Kotesovec, Aug 23 2015, extended Jan 14 2017
a(n) = (1/n)*Sum_{k=1..n} A046897(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
G.f. is a period 1 Fourier series which satisfies f(-1 / (256 t)) = 1/2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A082303. - Michael Somos, Sep 30 2017

Extensions

More terms from James Sellers

A079006 Expansion of q^(-1/4) * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^2 in powers of q.

Original entry on oeis.org

1, -2, 5, -10, 18, -32, 55, -90, 144, -226, 346, -522, 777, -1138, 1648, -2362, 3348, -4704, 6554, -9056, 12425, -16932, 22922, -30848, 41282, -54946, 72768, -95914, 125842, -164402, 213901, -277204, 357904, -460448, 590330, -754368, 960948, -1220370
Offset: 0

Views

Author

Michael Somos, Dec 22 2002

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The Lagrange series reversion of Sum_{n >= 1} a(n-1)*x^n is Sum_{n >= 1} A002103(n-1)*x^n. See the example in A002103. - Wolfdieter Lang, Jul 09 2016

Examples

			G.f. A(x) = 1 - 2*x + 5*x^2 - 10*x^3 + 18*x^4 - 32*x^5 + 55*x^6 - 90*x^7 + 144*x^8 + ...
G.f. B(q) = q * A(q^4) = q - 2*q^5 + 5*q^9 - 10*q^13 + 18*q^17 - 32*q^21 + 55*q^25 - 90*q^29 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[(1 + x^(k + 1)) / (1 + x^k), {k, 1, n, 2}]^2, {x, 0, n}]; (* Michael Somos, Jul 08 2011 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ[ q]}, SeriesCoefficient[ (m / 16 / q)^(1/4), {q, 0, n}]]; (* Michael Somos, Jul 08 2011 *)
    QP = QPochhammer; s = (QP[q]*(QP[q^4]^2/QP[q^2]^3))^2 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 23 2015 *)
    nmax = 50; CoefficientList[Series[Product[(1+x^(2*k))^4 / (1+x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^4]^2 / QPochhammer[ -x]^2, {x, 0, n}]; (* Michael Somos, Apr 19 2017 *)
  • PARI
    {a(n) = my(N, A); if( n<0, 0, N = (sqrtint(16*n + 1) + 1)\2; A = contfracpnqn( matrix(2, N, i, j, if( i==1, if( j<2, 1 + O(x^(N^2 + N)), (x^(j-1) + x^(3*j - 3))^2), 1 - x^(4*j - 2)))); polcoeff( A[2,1] / A[1,1], 4*n))}; /* Michael Somos, Sep 01 2005 */
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m = 1; while( m<=n, m*=2; A = subst(A, x, x^2); A = sqrt(A / (1 + 4 * x*A^2))); polcoeff(A, n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^2, n))};

Formula

a(n) = (2/n)*Sum_{k=1..n} (-1)^k*A046897(k)*a(n-k). - Vladeta Jovovic, Dec 24 2002
Expansion of q^(-1/4) * (1/2) * k^(1/2) in powers of q, where k^2 is the parameter and q the Jacobi nome of elliptic functions.
Expansion of (1/(2*q)) * (1 - sqrt(k')) / (1 + sqrt(k')) in powers of q^4, where k'^2 is the complementary parameter and q the Jacobi nome of elliptic functions. See the Fricke reference.
Expansion of psi(x^2) / phi(x) = psi(x)^2 / phi(x)^2 = psi(x^2)^2 / psi(x)^2 = psi(-x)^2 / phi(-x^2)^2 = chi(-x)^2 / chi(-x^2)^4 = 1 / (chi(x)^2 * chi(-x^2)^2) = 1 / (chi(x)^4 * chi(-x)^2) = f(-x^4)^2 / f(x)^2 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 4 sequence [-2, 4, -2, 0, ...].
G.f. A(x) satisfies A(x)^2 = A(x^2) / (1 + 4 * x * A(x^2)^2). - Michael Somos, Mar 19 2004
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 * (1 + 4 * v^2) - v. - Michael Somos, Jul 09 2005
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1*u3 * (u6 + u2)^2 - u2*u6. - Michael Somos, Jul 09 2005
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 + x^(2*k-1)))^2 = (Product_{k>0} (1 - x^(4*k)) / (1 - (-x)^k))^2.
Expansion of continued fraction 1 / (1 - x^2 + (x^1 + x^3)^2 / (1 - x^6 + (x^2 + x^6)^2 / (1 - x^10 + (x^3 + x^9)^2 / ...))) in powers of x^4. - Michael Somos, Sep 01 2005
Given g.f. A(x), then B(q) = 2 * q * A(q^4) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (1 - u^4) * (1 - v^4) - (1 - u*v)^4 . - Michael Somos, Jan 01 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A189925.
Convolution inverse of A029839. Convolution square of A083365. a(n) = (-1)^n * A001936(n).
G.f.: 1/Q(0), where Q(k)= 1 - x^(k+1/2) + (x^((k+1)/4) + x^((3*k+3)/4))^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 02 2013
a(n) ~ (-1)^n * exp(Pi*sqrt(n)) / (2^(7/2)*n^(3/4)). - Vaclav Kotesovec, Jul 04 2016
Given g.f. A(x), and B(x) is the g.f. for A008441, then A(x) = B(x^2) / B(x) and A(x) * A(x^2) * A(x^4) * ... = 1 / B(x). - Michael Somos, Apr 20 2017
Expansion of continued fraction 1 / (1 - x^1 + x^1*(1 + x^1)^2 / (1 - x^3 + x^2*(1 + x^2)^2 / (1 - x^5 + x^3*(1 + x^3)^2 / ...))) in powers of x^2. - Michael Somos, Apr 20 2017
a(n) = A208933(4*n+1) - A215348(4*n+1) (conjectured). - Thomas Baruchel, May 14 2018
A(x^4) = (1/(m*x)) * ( chi(x)^m - chi(-x)^m ) / ( chi(x)^m + chi(-x)^m ) at m = 2, where chi(x) = Product_{i >= 0} (1 + x^(2*i+1)) is the g.f. of A000700. The formula gives generating functions related to A092869 when m = 1 and A001938 (also A093160) when m = 4. - Peter Bala, Sep 23 2023

A029838 Expansion of square root of q times normalized Hauptmodul for Gamma(4) in powers of q^8.

Original entry on oeis.org

1, 1, -1, 0, 1, 0, -1, -1, 2, 1, -2, -1, 2, 1, -3, -1, 4, 2, -5, -2, 5, 2, -6, -3, 8, 4, -9, -4, 10, 4, -12, -6, 15, 7, -17, -7, 19, 8, -22, -10, 26, 12, -30, -13, 33, 14, -38, -17, 45, 21, -51, -22, 56, 24, -64, -29, 74, 33, -83, -36, 92, 40, -104, -46, 119, 53, -133, -58, 147, 63, -165, -73, 187, 83, -208, -90, 229, 99, -256
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x - x^2 + x^4 - x^6 - x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + 2*x^12 + ...
G.f. = 1/q + q^7 - q^15 + q^31 - q^47 - q^55 + 2*q^63 + q^71 - 2*q^79 - q^87 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 221 Entry 1(i).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^2] QPochhammer[ q^2, q^4], {q, 0, n}]; (* Michael Somos, Aug 20 2014 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q, -q] / QPochhammer[ q^4, q^4], {q, 0, n}]; (* Michael Somos, Aug 20 2014 *)
    a[ n_] := SeriesCoefficient[ q^(1/8) EllipticTheta[ 2, 0, q^(1/2)] / EllipticTheta[ 2, 0, q], {q, 0, n}]; (* Michael Somos, Aug 20 2014 *)
    (QPochhammer[-x, x^2, 1/2] + O[x]^100)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 + x^k)^(-(-1)^k), 1 + x * O(x^n)), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = contfracpnqn( matrix(2, (sqrtint(8*n + 1) + 1)\2, i, j, if( i==1, x^(j-1), 1 + if( j>1, x^(j-1))))); polcoeff(A[1,1] / A[2,1] + x * O(x^n), n))}; /* Michael Somos, Mar 02 2006 */
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A2 = subst(A, x, x^2); A = sqrt((A2 + 2  * x / A2) / A)); polcoeff(A, n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 / eta(x + A) / eta(x^4 + A)^2, n))};

Formula

Expansion of f(x) / f(-x^4) = phi(x) / psi(x) = psi(x) / psi(x^2) = phi(-x^2) / psi(-x) = chi(x) * chi(-x^2) = chi^2(x) * chi(-x) = chi^2(-x^2) / chi(-x) = (phi(x) / psi(x^2))^(1/2) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of q^(1/8) * eta(q^2)^3 / (eta(q) * eta(q^4)^2) in powers of q.
Euler transform of period 4 sequence [ 1, -2, 1, 0, ...].
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = 4 + v^4 - u^4*v^2. - Michael Somos, Mar 02 2006
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = u^4 - v^4 - 4*u*v + u^3*v^3. - Michael Somos, Mar 02 2006
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = 2 + w^2 - u^2*v*w. - Michael Somos, Mar 02 2006
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u2^2 + u6^2 - u1*u2*u3*u6. - Michael Somos, Mar 02 2006
G.f. A(x) satisfies A(x)^2 = (A(x^4) + 2*x / A(x^4)) / A(x^2). - Michael Somos, Mar 08 2004
G.f. A(x) satisfies A(x) = (A(x^2)^2+4*x/A(x^2)^2)^(1/4). - Joerg Arndt, Aug 06 2011
G.f.: Product_{k>0} (1 + x^(2*k - 1)) / (1 + x^(2*k)) = (Sum_{k>0} x^((k^2 - k)/2)) / (Sum_{k>0} x^(k^2 - k)).
G.f.: 1 + x / (1 + x + x^2 / (1 + x^2 + x^3 / (1 + x^3 + ...))).
A082303(n) = (-1)^n a(n). Convolution square is A029839. Convolution inverse is A083365.
G.f.: 2 - 2/(1+Q(0)), where Q(k)= 1 + x^(k+1) + x^(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 02 2013
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A109506(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 14 2017
abs(a(n)) ~ sqrt(sqrt(2) + (-1)^n) * exp(Pi*sqrt(n)/2^(3/2)) / (4*n^(3/4)). - Vaclav Kotesovec, Feb 07 2023

A092869 Series expansion of the Ramanujan-Goellnitz-Gordon continued fraction.

Original entry on oeis.org

1, -1, 0, 1, -1, 1, 0, -2, 2, -1, 0, 2, -3, 2, 0, -2, 4, -4, 0, 4, -6, 5, 0, -6, 9, -6, 0, 7, -12, 9, 0, -10, 16, -13, 0, 15, -22, 17, 0, -20, 29, -21, 0, 25, -38, 28, 0, -32, 50, -39, 0, 43, -64, 49, 0, -56, 82, -60, 0, 69, -105, 78, 0, -86, 132, -101, 0, 112, -166, 125, 0, -142, 208, -153, 0, 172, -258, 192, 0
Offset: 0

Views

Author

Michael Somos, Mar 07 2004; corrected Jun 09 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Glaisher (1876) writes "XIII. tan(pi/16) = (e^(-pi/2) - e^(-3 pi/2) - e^(-15 pi/2) + e^(-21 pi/2) + e^(-45 pi/2) - &c.) / (1 - e^(-6 pi/2) - e^(-10 pi/2) + e^(-28 pi/2) + e^(-36 pi/2) - &c.), ..." where the numerator is q * f( -q^2, -q^14) and denominator is f( -q^6, -q^10) where q = e^(-pi/2). - Michael Somos, Jun 22 2012
Berndt writes "[...] v = q^(1/2) f(-q,-q^7) / f(-q^3,-q^5). Then v = q^(1/2) / (1 + q + q^2 / (1 + q^3 + q^4 / (1 + q^5 + q^6 / (1 + x^7 + ...)))). (1.1)". - Michael Somos, Jul 09 2012
Jacobi writes "(7.) (1 - sqrt(k')) / (1 + sqrt(k') + sqrt(2(1+k'))) = (q - q^3 - q^15 + q^21 + q^45 - q^55 - ...) / (1 - q^6 - q^10 + q^28 + q^36 - q^66 - ...)." - Michael Somos, Sep 11 2012

Examples

			G.f. = 1 - x + x^3 - x^4 + x^5 - 2*x^7 + 2*x^8 - x^9 + 2*x^11 - 3*x^12 + ...
G/f. = q - q^3 + q^7 - q^9 + q^11 - 2*q^15 + 2*q^17 - q^19 + 2*q^23 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag; see p. 221 Entry 1(ii), eq. (1.1).
  • J. W. L. Glaisher, Identities, Messenger of Mathematics, 5 (1876), 111-112. see Eq. XIII
  • C. G. J. Jacobi, Über die Zur Numerischen Berechnung der Elliptischen Functionen Zweckmaessigsten Formeln, Crelle Bd. 26 (1843), 93-114 = Gesammelte Werke, Bd. 1, 1881, 343-368.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(16), 1/2), 159); LS := LaurentSeriesRing( RationalField()); A[3] / A[2]; /* Michael Somos, Aug 31 2018 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^8] QPochhammer[ x^7, x^8] /(QPochhammer[ x^3, x^8] QPochhammer[ x^5, x^8]), {x, 0, n}] (* Michael Somos, Aug 02 2011 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^2] / (EllipticTheta[ 3, 0, x] + EllipticTheta[ 3, 0, x^2]), {x, 0, n + 1/2}] (* Michael Somos, Aug 02 2011 *)
    a[ n_] := SeriesCoefficient[ Product[(1 - q^k)^KroneckerSymbol[ 8, k], {k, n}], {q, 0, n}] (* Michael Somos, Jul 08 2012 *)
  • PARI
    {a(n) = local(A, u, v); if( n<0, 0, n = 2*n + 1; A = x; forstep( k=3, n, 2, u = A + x * O(x^k); v = subst(u, x, x^2); A -= x^k * polcoeff(u^2 - v + v*u^2 + v^2, k+1) / 2); polcoeff(A, n))}
    
  • PARI
    {a(n) = local(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = x * subst(A, x, x^2); A = sqrt(A * (1 - A) / (1 + A) / x)); polcoeff(A, n))}
    
  • PARI
    {a(n) = local(A, A2); if( n<0, 0, A = eta(x^8 + x * O(x^n))^2 / eta(x^4 + x * O(x^n)); A2 = sum( k=1, sqrtint(n), x^k^2 + x^(2*k^2), 1 + x * O(x^n)); polcoeff(A / A2, n))}
    
  • PARI
    {a(n) = local(A, A2); if( n<0, 0, A = x * O(x^n); A = eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3; A2 = subst(A, x, x^2); polcoeff( 2 * A^2 * A2^2 / (A^2 + A2), n))}
    
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^kronecker(2, k))) \\ Seiichi Manyama, Sep 24 2019
    

Formula

Expansion of f(-x, -x^7) / f(-x^3, -x^5) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Aug 02 2011
Expansion of (phi(x) - phi(x^2)) / (2 * x * psi(x^4)) = 2 * psi(x^4) / (phi(x) + phi(x^2)) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 15 2006
Expansion of q^(-1) * (1 - sqrt(k')) / (1 + sqrt(k') + sqrt(2 * (1 + k'))) in powers of q^2 where k' is the complementary elliptic modulus. - Michael Somos, Sep 11 2012
Euler transform of period 8 sequence [-1, 0, 1, 0, 1, 0, -1, 0, ...].
G.f. A(x) satisfies both A(-x) * A(x) = A(x^2) and x * A(x)^2 = B(x * A(x^2)) where B(x) = x * (1 - x) / (1 + x).
Given g.f. A(x), then B(x) = x * A(x^2) satisfies 0 = f(B(x), B(x^2)) where f(u, v) = u^2 - v + v^2 + v*u^2.
Given g.f. A(x), then B(x) = x * A(x^2) satisfies 0 = f(B(x), B(x^3)) where f(u, v) = (1 - u*v) * (u + v)^3 - v * (1 + v^2) * (1 - u^4). - Michael Somos, Feb 15 2006
Given g.f. A(x), then B(x) = x * A(x^2) satisfies 0 = f(B(x), B(x^5)) where f(u, v) = (u - v) * (1 + u*v)^5 - u * (1 - u^4) * (1 + v^2) * (1 - 6*v^2 + v^4). - Michael Somos, Feb 15 2006
G.f.: Product_{k>=0} (1 - x^(8*k + 1)) * (1 - x^(8*k + 7)) / ((1 - x^(8*k + 3)) * (1 - x^(8*k + 5))).
G.f. = continued fraction 1/(1 + x + x^2/(1 + x^3 + x^4/(1 + x^5 + x^6/(1 + x^7 + ...)))). Convolution inverse of A111374.
a(2*n + 1) = -A226559(n). - Michael Somos, Jun 12 2013
a(4*n) = A083365(n). a(4*n + 2) = 0.
G.f. A(x) satisfies x*A(-x^2) = x*B(x^2)/C(x^2) = (F(x) - F(-x))/(F(x) + F(-x)), where B(x) is the g.f. of A069911, C(x) is the g.f. of A069910 and F(x) = Product_{k >= 0} 1 + x^(2*k+1) is the g.f. of A000700. - Peter Bala, Feb 07 2021

A111374 Series expansion of the reciprocal of the Goellnitz-Gordon continued fraction.

Original entry on oeis.org

1, 1, 1, 0, 0, -1, -1, 0, 1, 2, 1, 0, -2, -3, -2, 0, 3, 4, 4, 0, -4, -6, -5, 0, 5, 9, 6, 0, -8, -12, -9, 0, 12, 16, 13, 0, -14, -22, -17, 0, 18, 29, 21, 0, -26, -38, -28, 0, 34, 50, 39, 0, -42, -64, -49, 0, 53, 82, 60, 0, -70, -105, -78, 0, 90, 132, 101, 0, -110, -166, -125, 0, 137, 208, 153, 0, -174, -258, -192, 0, 217
Offset: 0

Views

Author

N. J. A. Sloane, Nov 09 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 15 of the 15 generalized eta-quotients listed in Table I of Yang 2004. - Michael Somos, Aug 07 2014
A generator (Hauptmodul) of the function field associated with the intersection of congruence subgroups Gamma(2) and Gamma_1(8). [Yang 2004] - Michael Somos, Aug 07 2014

Examples

			G.f. = 1 + x + x^2 - x^5 - x^6 + x^8 + 2*x^9 + x^10 - 2*x^12 - 3*x^13 - 2*x^14 + ...
G.f. = 1/q + q + q^3 - q^9 - q^11 + q^15 + 2*q^17 + q^19 - 2*q^23 - 3*q^25 + ...
		

Crossrefs

Programs

  • Maple
    M:=100; qf:=(a,q)->mul(1-a*q^j,j=0..M); t2:=qf(q^3,q^8)*qf(q^5,q^8)/(qf(q,q^8)*qf(q^7,q^8)); series(%,q,M); seriestolist(%);
  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[(1 - x^k)^-KroneckerSymbol[ 2, k], {k, n}], {x, 0, n}]; (* Michael Somos, Jul 08 2012 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3, x^8] QPochhammer[ x^5, x^8] / (QPochhammer[ x, x^8] QPochhammer[ x^7, x^8] ), {x, 0, n}]; (* Michael Somos, Jul 08 2012 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x] + EllipticTheta[ 3, 0, x^2]) / EllipticTheta[ 2, 0, x^2], {x, 0, n - 1/2}]; (* Michael Somos, Jul 08 2012 *)
  • PARI
    {a(n) = my(A, A2); if( n<0, 0, A = x * O(x^n); A = eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3; A2 = subst(A, x, x^2); polcoeff( (A^2 + A2) / (2 * A^2 * A2^2 ), n))}; /* Michael Somos, Mar 08 2012 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n))^-kronecker( 2, k)), n))}; /* Michael Somos, Jul 08 2012 */

Formula

Expansion of 1 + x + x^2/(1 + x^3 + x^4/(1 + x^5 + x^6/(1 + x^7+ ...))) in powers of x.
Let qf(a, q) = Product(1-a*q^j, j=0..infinity); g.f. is qf(q^3, q^8)*qf(q^5, q^8)/(qf(q, q^8)*qf(q^7, q^8)).
Expansion of (phi(x) + phi(x^2)) / (2 * psi(x^4)) = 2 * x * psi(x^4) / (phi(x) - phi(x^2)) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 15 2006
Expansion of f(-x^3, -x^5) / f(-x, -x^7) in powers of x where f(,) is Ramanujan's two-variable theta function. - Michael Somos, Mar 08 2012
Euler transform of period 8 sequence [ 1, 0, -1, 0, -1, 0, 1, 0, ...]. - Michael Somos, Mar 08 2012
Given g.f. A(x), then B(q) = A(q^2) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 * (v - 1) - v * (v + 1). - Michael Somos, Oct 22 2013
a(4*n + 3) = 0. a(4*n + 1) = A083365(n). Convolution inverse of A092869.

A001937 Expansion of (psi(x^2) / psi(-x))^3 in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 9, 22, 48, 99, 194, 363, 657, 1155, 1977, 3312, 5443, 8787, 13968, 21894, 33873, 51795, 78345, 117312, 174033, 255945, 373353, 540486, 776848, 1109040, 1573209, 2218198, 3109713, 4335840, 6014123, 8300811, 11402928, 15593702, 21232521, 28790667, 38884082
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The Cayley reference is actually to A187053. - Michael Somos, Jul 26 2012

Examples

			1 + 3*x + 9*x^2 + 22*x^3 + 48*x^4 + 99*x^5 + 194*x^6 + 363*x^7 + 657*x^8 + ...
q^3 + 3*q^11 + 9*q^19 + 22*q^27 + 48*q^35 + 99*q^43 + 194*q^51 + 363*q^59 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    g100:= mul((1+x^(2*k))/(1-x^(2*k-1)),k=1..50)^3:
    S:= series(g100,x,101):
    seq(coeff(S,x,j),j=0..100); # Robert Israel, Nov 30 2015
  • Mathematica
    CoefficientList[ Series[Product[(1 - x^k)^(-3*Boole[Mod[k, 4] != 0]), {k, 1, 101}], {x, 0, 100}], x] (* Olivier GERARD, May 06 2009 *)
    QP = QPochhammer; s = (QP[q^4]/QP[q])^3 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A) / eta(x + A))^3, n))} /* Michael Somos, Mar 06 2011 */

Formula

Expansion of q^(-3/8) * (eta(q^4) / eta(q))^3 in powers of q. - Michael Somos, Jul 26 2012
Euler transform of period 4 sequence [ 3, 3, 3, 0, ...]. - Michael Somos, Mar 06 2011
Convolution cube of A001935. A187053(n) = (-1)^n * a(n). - Michael Somos, Mar 06 2011
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k-1)))^3.
a(n) ~ 3^(1/4) * exp(sqrt(3*n/2)*Pi) / (16*2^(3/4)*n^(3/4)). - Vaclav Kotesovec, Nov 15 2017

Extensions

Corrected and extended by Simon Plouffe
Checked and more terms from Olivier GERARD, May 06 2009

A187053 Expansion of (psi(x^2) / psi(x))^3 in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -3, 9, -22, 48, -99, 194, -363, 657, -1155, 1977, -3312, 5443, -8787, 13968, -21894, 33873, -51795, 78345, -117312, 174033, -255945, 373353, -540486, 776848, -1109040, 1573209, -2218198, 3109713, -4335840, 6014123, -8300811, 11402928
Offset: 0

Views

Author

Michael Somos, Mar 06 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 3*x + 9*x^2 - 22*x^3 + 48*x^4 - 99*x^5 + 194*x^6 - 363*x^7 + ...
G.f. = q^3 - 3*q^11 + 9*q^19 - 22*q^27 + 48*q^35 - 99*q^43 + 194*q^51 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^4] / QPochhammer[ -x])^3, {x, 0, n}]; (* Michael Somos, Sep 02 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^3, n))};

Formula

Expansion of q^(-3/8) * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^3 in powers of q.
Euler transform of period 4 sequence [-3, 6, -3, 0, ...].
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 + x^(2*k-1)))^3.
Convolution inverse of A029840. Convolution cube of A083365. a(n) = (-1)^n * A001937(n).
a(n) ~ (-1)^n * 3^(1/4) * exp(sqrt(3*n/2)*Pi) / (16*2^(3/4)*n^(3/4)). - Vaclav Kotesovec, Nov 15 2017

A195861 Expansion of (psi(x) / phi(x))^5 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -5, 20, -65, 185, -481, 1165, -2665, 5820, -12220, 24802, -48880, 93865, -176125, 323685, -583798, 1035060, -1806600, 3108085, -5276305, 8846884, -14663645, 24044285, -39029560, 62755345, -100004806, 158022900, -247710570, 385366265
Offset: 0

Views

Author

Michael Somos, Sep 24 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 5*x + 20*x^2 - 65*x^3 + 185*x^4 - 481*x^5 + 1165*x^6 - 2665*x^7 + ...
G.f. = q^5 - 5*q^13 + 20*q^21 - 65*q^29 + 185*q^37 - 481*q^45 + 1165*q^53 - 2665*q^61 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.

Crossrefs

(psi(x) / phi(x))^b: A083365 (b=1), A079006 (b=2), A187053 (b=3), A001938 (b=4), this sequence (b=5).

Programs

  • Mathematica
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (m / 16)^(5/8), {q, 0, n + 5/8}]];
    a[ n_] := SeriesCoefficient[ Product[(1 + x^(k + 1)) / (1 + x^k), {k, 1, n, 2}]^5, {x, 0, n}];
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x^2, x^2] / QPochhammer[ -x, x^2])^5, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^2)^5, n))};

Formula

Expansion of q^(-5/8) * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^5 in powers of q.
Euler transform of period 4 sequence [-5, 10, -5, 0, ...].
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 + x^(2*k - 1)))^5.
a(n) = (-1)^n * A001939(n). Convolution inverse of A029842.
a(n) ~ (-1)^n * 5^(1/4) * exp(sqrt(5*n/2)*Pi) / (64 * 2^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 27 2015

A307462 Expansion of Product_{k>=1} (1+x^k)^((-1)^k*k^2).

Original entry on oeis.org

1, -1, 5, -14, 36, -97, 246, -593, 1423, -3351, 7699, -17432, 38901, -85545, 185862, -399220, 848080, -1783682, 3716584, -7675916, 15722127, -31951330, 64452707, -129102947, 256876062, -507854808, 997954125, -1949631802, 3787674152, -7319306458, 14071371173
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2019

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = (-1)^(n+1) * n^2, g(n) = -1.

Crossrefs

Product_{k>=1} (1+x^k)^((-1)^k*k^b): A083365 (b=0), A284474 (b=1), this sequence (b=2).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + x^k)^((-1)^k*k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 09 2019 *)
    nmax = 40; CoefficientList[Series[Product[(1 + x^(2*k))^(4*k^2) / (1 + x^(2*k - 1))^((2*k - 1)^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 09 2019 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+x^k)^((-1)^k*k^2)))

Formula

a(n) ~ (-1)^n * exp(2*Pi*n^(3/4)/3 + 3*Zeta(3)/(4*Pi^2)) / (4*n^(5/8)). - Vaclav Kotesovec, Apr 09 2019

A134178 Expansion of chi(x) * chi(-x^2)^2 * chi(-x^3) * chi(-x^4) * chi(x^6)^2 * chi(-x^12) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, -2, -2, 0, 1, 2, 0, 0, -1, -4, 0, 1, 0, 6, 2, 0, 1, -8, 0, 0, 0, 12, 0, -1, -1, -18, -4, 0, -1, 24, 0, 0, 2, -32, 0, 0, 1, 44, 6, 0, -2, -58, 0, 0, -1, 76, 0, 1, 2, -100, -8, 0, 1, 128, 0, 0, -3, -164, 0, 0, -1, 210, 12, 0, 4, -264, 0, 0, 2, 332, 0, -1, -5, -416, -18, 0, -2, 516, 0, 0, 5, -640, 0, -1, 2, 790, 24
Offset: 0

Views

Author

Michael Somos, Oct 11 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x - 2*x^2 - 2*x^3 + x^5 + 2*x^6 - x^9 - 4*x^10 + x^12 + 6*x^14 + ...
G.f. = q^-3 + q^-1 - 2*q - 2*q^3 + q^7 + 2*q^9 - q^15 - 4*q^17 + q^21 + 6*q^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ x^2, x^4]^2 QPochhammer[ x^3, x^6] QPochhammer[ x^4, x^8] QPochhammer[-x^6, x^12]^2 QPochhammer[ x^12, x^24], {x, 0, n}]; (* Michael Somos, Oct 25 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^12, x^24] QPochhammer[ x^24, x^48] + x QPochhammer[ -x^4, x^8] QPochhammer[ x^8, x^16] - 2 x^2 QPochhammer[ x^16] / QPochhammer[ -x^4] - 2 x^3 QPochhammer[ x^48] / QPochhammer[ -x^12], {x, 0, n}]; (* Michael Somos, Oct 25 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^3 + A) * eta(x^12 + A)^5 / (eta(x + A) * eta(x^4 + A)^2 * eta(x^6 + A)^3 * eta(x^8 + A) * eta(x^24 + A)^3), n))};

Formula

Euler transform of period 24 sequence [ 1, -3, 0, -1, 1, -1, 1, 0, 0, -3, 1, -4, 1, -3, 0, 0, 1, -1, 1, -1, 0, -3, 1, 0, ...].
a(12*n + 4) = a(12*n + 7) = a(12*n + 8) = a(12*n + 11) = 0.
a(4*n + 1) = a(12*n) = A029838(n). a(4*n + 2) = a(12*n + 3) = -2 * A083365(n).
Showing 1-10 of 18 results. Next